File size: 16,235 Bytes
c594756
 
 
 
 
 
b35040f
 
 
1b14f4f
 
4f4519e
3450cf6
841bbb9
ac511b5
 
a468d45
4f4519e
c594756
4f4519e
 
b35040f
c594756
9d5df43
c3ffb57
c594756
c3ffb57
 
 
 
 
 
 
 
 
b35040f
c594756
2cf25ca
2bfd556
4f4519e
c594756
 
 
 
 
 
 
a468d45
 
 
 
 
c594756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a468d45
c594756
a468d45
c594756
 
 
 
 
 
 
 
 
 
 
a468d45
 
c594756
a468d45
c594756
 
 
a468d45
c594756
a468d45
c594756
a468d45
c594756
a468d45
c594756
a468d45
c594756
 
 
 
 
 
 
 
112f5f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9901299
 
 
 
 
a468d45
9901299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a468d45
9901299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bfd556
9901299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bfd556
9901299
2bfd556
9901299
 
 
 
 
 
 
 
 
 
1b51b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import dash
from dash import dcc, html, Input, Output, State, callback
import dash_bootstrap_components as dbc
import base64
import io
import os
from snac import SNAC
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import google.generativeai as genai
import re
import logging
import numpy as np
from pydub import AudioSegment
from docx import Document
import PyPDF2
from tqdm import tqdm

# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load models
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)

model_name = "canopylabs/orpheus-3b-0.1-ft"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")

# Available voices and emotive tags
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
EMOTIVE_TAGS = ["<laugh>", "<chuckle>", "<sigh>", "<cough>", "<sniffle>", "<groan>", "<yawn>", "<gasp>"]

# Initialize Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])

# Layout
app.layout = dbc.Container([
    dbc.Row([
        dbc.Col([
            html.H1("Orpheus Text-to-Speech", className="text-center mb-4"),
        ], width=12),
    ]),
    dbc.Row([
        dbc.Col([
            dbc.Input(id="host1-name", placeholder="Enter name of first host", className="mb-2"),
            dbc.Input(id="host2-name", placeholder="Enter name of second host", className="mb-2"),
            dbc.Input(id="podcast-name", placeholder="Enter podcast name", className="mb-2"),
            dbc.Input(id="podcast-topic", placeholder="Enter podcast topic", className="mb-2"),
            dbc.Textarea(id="prompt", placeholder="Enter your text here...", rows=5, className="mb-2"),
            dcc.Upload(
                id='upload-file',
                children=html.Div(['Drag and Drop or ', html.A('Select a File')]),
                style={
                    'width': '100%',
                    'height': '60px',
                    'lineHeight': '60px',
                    'borderWidth': '1px',
                    'borderStyle': 'dashed',
                    'borderRadius': '5px',
                    'textAlign': 'center',
                    'margin': '10px 0'
                },
            ),
            html.Label("Duration (minutes)", className="mt-2"),
            dcc.Slider(id="duration", min=1, max=60, value=5, step=1, marks={1: '1', 30: '30', 60: '60'}, className="mb-2"),
            html.Label("Number of Hosts", className="mt-2"),
            dbc.RadioItems(
                id="num-hosts",
                options=[{"label": i, "value": i} for i in ["1", "2"]],
                value="1",
                inline=True,
                className="mb-2"
            ),
            dbc.Button("Generate Podcast Script", id="generate-script-btn", color="primary", className="mb-2"),
        ], width=6),
        dbc.Col([
            dbc.Textarea(id="script-output", placeholder="Generated script will appear here...", rows=10, className="mb-2"),
            dbc.Button("Clear", id="clear-btn", color="secondary", className="mb-2"),
            html.Label("Voice 1", className="mt-2"),
            dcc.Dropdown(id="voice1", options=[{"label": v, "value": v} for v in VOICES], value="tara", className="mb-2"),
            html.Label("Voice 2", className="mt-2"),
            dcc.Dropdown(id="voice2", options=[{"label": v, "value": v} for v in VOICES], value="zac", className="mb-2"),
            dbc.Button("Generate Audio", id="generate-audio-btn", color="success", className="mb-2"),
            html.Div(id="audio-output"),
            dbc.Button("Advanced Settings", id="advanced-settings-toggle", color="info", className="mb-2"),
            dbc.Collapse([
                html.Label("Temperature", className="mt-2"),
                dcc.Slider(id="temperature", min=0.1, max=1.5, value=0.6, step=0.05, marks={0.1: '0.1', 0.8: '0.8', 1.5: '1.5'}, className="mb-2"),
                html.Label("Top P", className="mt-2"),
                dcc.Slider(id="top-p", min=0.1, max=1.0, value=0.9, step=0.05, marks={0.1: '0.1', 0.5: '0.5', 1.0: '1.0'}, className="mb-2"),
                html.Label("Repetition Penalty", className="mt-2"),
                dcc.Slider(id="repetition-penalty", min=1.0, max=2.0, value=1.2, step=0.1, marks={1.0: '1.0', 1.5: '1.5', 2.0: '2.0'}, className="mb-2"),
                html.Label("Max New Tokens", className="mt-2"),
                dcc.Slider(id="max-new-tokens", min=100, max=16384, value=4096, step=100, marks={100: '100', 8192: '8192', 16384: '16384'}, className="mb-2"),
            ], id="advanced-settings", is_open=False),
        ], width=6),
    ]),
    dcc.Store(id='generated-script'),
    dcc.Store(id='generated-audio'),
])

def process_prompt(text, voice, tokenizer, device):
    prompt = f"{voice}: {text}"
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    attention_mask = inputs["attention_mask"].to(device)
    return input_ids, attention_mask

def parse_output(generated_ids):
    decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
    code_list = [int(code) for code in decoded.split() if code.isdigit()]
    return code_list

def redistribute_codes(code_list, snac_model):
    audio = snac_model.codes_to_audio(torch.tensor(code_list).unsqueeze(0).to(device))
    return audio.cpu().numpy().flatten()

def detect_silence(audio, threshold=0.01, min_silence_len=1000):
    is_silent = np.abs(audio) < threshold
    silent_regions = []
    silent_start = None
    for i, silent in enumerate(is_silent):
        if silent and silent_start is None:
            silent_start = i
        elif not silent and silent_start is not None:
            if i - silent_start >= min_silence_len:
                silent_regions.append((silent_start, i))
            silent_start = None
    if silent_start is not None and len(audio) - silent_start >= min_silence_len:
        silent_regions.append((silent_start, len(audio)))
    return silent_regions

def generate_audio(script_output, voice1, voice2, num_hosts, temperature, top_p, repetition_penalty, max_new_tokens):
    try:
        paragraphs = script_output.split('\n\n')  # Split by double newline
        audio_samples = []
        
        for i, paragraph in tqdm(enumerate(paragraphs), total=len(paragraphs), desc="Generating audio"):
            if not paragraph.strip():
                continue
            
            voice = voice1 if num_hosts == "1" or i % 2 == 0 else voice2
            
            input_ids, attention_mask = process_prompt(paragraph, voice, tokenizer, device)
            
            with torch.no_grad():
                generated_ids = model.generate(
                    input_ids,
                    attention_mask=attention_mask,
                    do_sample=True,
                    temperature=temperature,
                    top_p=top_p,
                    repetition_penalty=repetition_penalty,
                    max_new_tokens=max_new_tokens,
                    num_return_sequences=1,
                    eos_token_id=128258,
                    pad_token_id=128258,
                )
            
            code_list = parse_output(generated_ids)
            paragraph_audio = redistribute_codes(code_list, snac_model)
            
            silences = detect_silence(paragraph_audio)
            if silences:
                paragraph_audio = paragraph_audio[:silences[-1][1]]
            
            audio_samples.append(paragraph_audio)
        
        final_audio = np.concatenate(audio_samples)
        final_audio = np.int16(final_audio / np.max(np.abs(final_audio)) * 32767)
        
        return final_audio
    except Exception as e:
        logger.error(f"Error generating speech: {str(e)}")
        return None

@callback(
    Output("script-output", "value"),
    Output("audio-output", "children"),
    Output("advanced-settings", "is_open"),
    Output("prompt", "value"),
    Input("generate-script-btn", "n_clicks"),
    Input("generate-audio-btn", "n_clicks"),
    Input("advanced-settings-toggle", "n_clicks"),
    Input("clear-btn", "n_clicks"),
    State("host1-name", "value"),
    State("host2-name", "value"),
    State("podcast-name", "value"),
    State("podcast-topic", "value"),
    State("prompt", "value"),
    State("upload-file", "contents"),
    State("duration", "value"),
    State("num-hosts", "value"),
    State("script-output", "value"),
    State("voice1", "value"),
    State("voice2", "value"),
    State("temperature", "value"),
    State("top-p", "value"),
    State("repetition-penalty", "value"),
    State("max-new-tokens", "value"),
    State("advanced-settings", "is_open"),
    prevent_initial_call=True
)
def combined_callback(generate_script_clicks, generate_audio_clicks, advanced_settings_clicks, clear_clicks,
                      host1_name, host2_name, podcast_name, podcast_topic, prompt, uploaded_file, duration, num_hosts,
                      script_output, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, is_advanced_open):
    ctx = dash.callback_context
    if not ctx.triggered:
        return dash.no_update, dash.no_update, dash.no_update, dash.no_update

    trigger_id = ctx.triggered[0]['prop_id'].split('.')[0]

    if trigger_id == "generate-script-btn":
        try:
            api_key = os.environ.get("GEMINI_API_KEY")
            if not api_key:
                raise ValueError("Gemini API key not found in environment variables")
            
            genai.configure(api_key=api_key)
            model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
            
            combined_content = prompt or ""
            
            if uploaded_file:
                content_type, content_string = uploaded_file.split(',')
                decoded = base64.b64decode(content_string)
                file_bytes = io.BytesIO(decoded)
                
                file_bytes.seek(0)
                if file_bytes.read(4) == b'%PDF':
                    file_bytes.seek(0)
                    pdf_reader = PyPDF2.PdfReader(file_bytes)
                    file_content = "\n".join([page.extract_text() for page in pdf_reader.pages])
                else:
                    file_bytes.seek(0)
                    try:
                        file_content = file_bytes.read().decode('utf-8')
                    except UnicodeDecodeError:
                        file_bytes.seek(0)
                        try:
                            doc = Document(file_bytes)
                            file_content = "\n".join([para.text for para in doc.paragraphs])
                        except:
                            raise ValueError("Unsupported file type or corrupted file")

                combined_content += "\n" + file_content if combined_content else file_content
            
            num_hosts = int(num_hosts) if num_hosts else 1
            
            prompt_template = f"""
            Create a podcast script for {num_hosts} {'person' if num_hosts == 1 else 'people'} discussing:
            {combined_content}
            
            Duration: {duration} minutes. Include natural speech, humor, and occasional off-topic thoughts.
            Use speech fillers like um, ah. Vary emotional tone.
            
            Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
            Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
            If the number of {num_hosts} is 1 then each paragraph will be no more than 3 sentences each
            Only provide the dialog for text to speech.
            Only use these emotion tags in angle brackets: {', '.join(EMOTIVE_TAGS)}.
            -Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
            Ensure content flows naturally and stays on topic. Match the script length to {duration} minutes.
            Do not include speaker labels like "jane:" or "john:" before dialogue.
            The intro always includes the ({host1_name} and/or {host2_name}) if it exists and should be in the same paragraph. 
            The outro always includes the ({host1_name} and/or {host2_name}) if it exists and should be in the same paragraph
            Do not include these types of transitions in the intro, outro or between paragraphs for example: "Intro Music fades in...".  Its just dialog.
            Keep each speaker's entire monologue in a single paragraph, regardless of length if the number of hosts is not 1.
            Start a new paragraph only when switching to a different speaker if the number of hosts is not 1.
            Maintain natural conversation flow and speech patterns within each monologue.
            Use context clues or subtle references to indicate who is speaking without explicit labels if the number of hosts is not 1.
            Use speaker names ({host1_name} and/or {host2_name}) sparingly, only when necessary for clarity or emphasis. Avoid starting every line with the other person's name.
            Rely more on context and speech patterns to indicate who is speaking, rather than always stating names.
            Use names primarily for transitions sparingly, definitely with agreements, or to draw attention to a specific point, not as a constant form of address.
            {'Make sure the script is a monologue for one person.' if num_hosts == 1 else f'Ensure the dialogue alternates between two distinct voices, with {host1_name} speaking on odd-numbered lines and {host2_name} on even-numbered lines.'}
            Always include intro with the speaker name and its the podcast name "{podcast_name}" in intoduce the topic of the podcast with "{podcast_topic}".
            Incorporate the podcast name and topic naturally into the intro and outro, and ensure the content stays relevant to the specified topic throughout the script.
            """
            
            response = model.generate_content(prompt_template)
            return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text), dash.no_update, dash.no_update, dash.no_update
        except Exception as e:
            logger.error(f"Error generating podcast script: {str(e)}")
            return f"Error: {str(e)}", dash.no_update, dash.no_update, dash.no_update

    elif trigger_id == "generate-audio-btn":
        if not script_output.strip():
            return dash.no_update, html.Div("No audio generated yet."), dash.no_update, dash.no_update
        
        final_audio = generate_audio(script_output, voice1, voice2, num_hosts, temperature, top_p, repetition_penalty, max_new_tokens)
        
        if final_audio is not None:
            # Convert to base64 for audio playback
            audio_base64 = base64.b64encode(final_audio.tobytes()).decode('utf-8')
            src = f"data:audio/wav;base64,{audio_base64}"
            
            # Create a download link for the audio
            download_link = html.A("Download Audio", href=src, download="generated_audio.wav")
            
            return dash.no_update, html.Div([
                html.Audio(src=src, controls=True),
                html.Br(),
                download_link
            ]), dash.no_update, dash.no_update
        else:
            return dash.no_update, html.Div("Error generating audio"), dash.no_update, dash.no_update

    elif trigger_id == "advanced-settings-toggle":
        return dash.no_update, dash.no_update, not is_advanced_open, dash.no_update

    elif trigger_id == "clear-btn":
        return "", html.Div("No audio generated yet."), dash.no_update, ""

    return dash.no_update, dash.no_update, dash.no_update, dash.no_update

# Run the app
if __name__ == '__main__':
    print("Starting the Dash application...")
    app.run(debug=True, host='0.0.0.0', port=7860)
    print("Dash application has finished running.")