Spaces:
Sleeping
Sleeping
File size: 16,235 Bytes
c594756 b35040f 1b14f4f 4f4519e 3450cf6 841bbb9 ac511b5 a468d45 4f4519e c594756 4f4519e b35040f c594756 9d5df43 c3ffb57 c594756 c3ffb57 b35040f c594756 2cf25ca 2bfd556 4f4519e c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 a468d45 c594756 112f5f1 9901299 a468d45 9901299 a468d45 9901299 2bfd556 9901299 2bfd556 9901299 2bfd556 9901299 1b51b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import dash
from dash import dcc, html, Input, Output, State, callback
import dash_bootstrap_components as dbc
import base64
import io
import os
from snac import SNAC
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import google.generativeai as genai
import re
import logging
import numpy as np
from pydub import AudioSegment
from docx import Document
import PyPDF2
from tqdm import tqdm
# Initialize logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load models
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
model_name = "canopylabs/orpheus-3b-0.1-ft"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")
# Available voices and emotive tags
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
EMOTIVE_TAGS = ["<laugh>", "<chuckle>", "<sigh>", "<cough>", "<sniffle>", "<groan>", "<yawn>", "<gasp>"]
# Initialize Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# Layout
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H1("Orpheus Text-to-Speech", className="text-center mb-4"),
], width=12),
]),
dbc.Row([
dbc.Col([
dbc.Input(id="host1-name", placeholder="Enter name of first host", className="mb-2"),
dbc.Input(id="host2-name", placeholder="Enter name of second host", className="mb-2"),
dbc.Input(id="podcast-name", placeholder="Enter podcast name", className="mb-2"),
dbc.Input(id="podcast-topic", placeholder="Enter podcast topic", className="mb-2"),
dbc.Textarea(id="prompt", placeholder="Enter your text here...", rows=5, className="mb-2"),
dcc.Upload(
id='upload-file',
children=html.Div(['Drag and Drop or ', html.A('Select a File')]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px 0'
},
),
html.Label("Duration (minutes)", className="mt-2"),
dcc.Slider(id="duration", min=1, max=60, value=5, step=1, marks={1: '1', 30: '30', 60: '60'}, className="mb-2"),
html.Label("Number of Hosts", className="mt-2"),
dbc.RadioItems(
id="num-hosts",
options=[{"label": i, "value": i} for i in ["1", "2"]],
value="1",
inline=True,
className="mb-2"
),
dbc.Button("Generate Podcast Script", id="generate-script-btn", color="primary", className="mb-2"),
], width=6),
dbc.Col([
dbc.Textarea(id="script-output", placeholder="Generated script will appear here...", rows=10, className="mb-2"),
dbc.Button("Clear", id="clear-btn", color="secondary", className="mb-2"),
html.Label("Voice 1", className="mt-2"),
dcc.Dropdown(id="voice1", options=[{"label": v, "value": v} for v in VOICES], value="tara", className="mb-2"),
html.Label("Voice 2", className="mt-2"),
dcc.Dropdown(id="voice2", options=[{"label": v, "value": v} for v in VOICES], value="zac", className="mb-2"),
dbc.Button("Generate Audio", id="generate-audio-btn", color="success", className="mb-2"),
html.Div(id="audio-output"),
dbc.Button("Advanced Settings", id="advanced-settings-toggle", color="info", className="mb-2"),
dbc.Collapse([
html.Label("Temperature", className="mt-2"),
dcc.Slider(id="temperature", min=0.1, max=1.5, value=0.6, step=0.05, marks={0.1: '0.1', 0.8: '0.8', 1.5: '1.5'}, className="mb-2"),
html.Label("Top P", className="mt-2"),
dcc.Slider(id="top-p", min=0.1, max=1.0, value=0.9, step=0.05, marks={0.1: '0.1', 0.5: '0.5', 1.0: '1.0'}, className="mb-2"),
html.Label("Repetition Penalty", className="mt-2"),
dcc.Slider(id="repetition-penalty", min=1.0, max=2.0, value=1.2, step=0.1, marks={1.0: '1.0', 1.5: '1.5', 2.0: '2.0'}, className="mb-2"),
html.Label("Max New Tokens", className="mt-2"),
dcc.Slider(id="max-new-tokens", min=100, max=16384, value=4096, step=100, marks={100: '100', 8192: '8192', 16384: '16384'}, className="mb-2"),
], id="advanced-settings", is_open=False),
], width=6),
]),
dcc.Store(id='generated-script'),
dcc.Store(id='generated-audio'),
])
def process_prompt(text, voice, tokenizer, device):
prompt = f"{voice}: {text}"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
attention_mask = inputs["attention_mask"].to(device)
return input_ids, attention_mask
def parse_output(generated_ids):
decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
code_list = [int(code) for code in decoded.split() if code.isdigit()]
return code_list
def redistribute_codes(code_list, snac_model):
audio = snac_model.codes_to_audio(torch.tensor(code_list).unsqueeze(0).to(device))
return audio.cpu().numpy().flatten()
def detect_silence(audio, threshold=0.01, min_silence_len=1000):
is_silent = np.abs(audio) < threshold
silent_regions = []
silent_start = None
for i, silent in enumerate(is_silent):
if silent and silent_start is None:
silent_start = i
elif not silent and silent_start is not None:
if i - silent_start >= min_silence_len:
silent_regions.append((silent_start, i))
silent_start = None
if silent_start is not None and len(audio) - silent_start >= min_silence_len:
silent_regions.append((silent_start, len(audio)))
return silent_regions
def generate_audio(script_output, voice1, voice2, num_hosts, temperature, top_p, repetition_penalty, max_new_tokens):
try:
paragraphs = script_output.split('\n\n') # Split by double newline
audio_samples = []
for i, paragraph in tqdm(enumerate(paragraphs), total=len(paragraphs), desc="Generating audio"):
if not paragraph.strip():
continue
voice = voice1 if num_hosts == "1" or i % 2 == 0 else voice2
input_ids, attention_mask = process_prompt(paragraph, voice, tokenizer, device)
with torch.no_grad():
generated_ids = model.generate(
input_ids,
attention_mask=attention_mask,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
num_return_sequences=1,
eos_token_id=128258,
pad_token_id=128258,
)
code_list = parse_output(generated_ids)
paragraph_audio = redistribute_codes(code_list, snac_model)
silences = detect_silence(paragraph_audio)
if silences:
paragraph_audio = paragraph_audio[:silences[-1][1]]
audio_samples.append(paragraph_audio)
final_audio = np.concatenate(audio_samples)
final_audio = np.int16(final_audio / np.max(np.abs(final_audio)) * 32767)
return final_audio
except Exception as e:
logger.error(f"Error generating speech: {str(e)}")
return None
@callback(
Output("script-output", "value"),
Output("audio-output", "children"),
Output("advanced-settings", "is_open"),
Output("prompt", "value"),
Input("generate-script-btn", "n_clicks"),
Input("generate-audio-btn", "n_clicks"),
Input("advanced-settings-toggle", "n_clicks"),
Input("clear-btn", "n_clicks"),
State("host1-name", "value"),
State("host2-name", "value"),
State("podcast-name", "value"),
State("podcast-topic", "value"),
State("prompt", "value"),
State("upload-file", "contents"),
State("duration", "value"),
State("num-hosts", "value"),
State("script-output", "value"),
State("voice1", "value"),
State("voice2", "value"),
State("temperature", "value"),
State("top-p", "value"),
State("repetition-penalty", "value"),
State("max-new-tokens", "value"),
State("advanced-settings", "is_open"),
prevent_initial_call=True
)
def combined_callback(generate_script_clicks, generate_audio_clicks, advanced_settings_clicks, clear_clicks,
host1_name, host2_name, podcast_name, podcast_topic, prompt, uploaded_file, duration, num_hosts,
script_output, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, is_advanced_open):
ctx = dash.callback_context
if not ctx.triggered:
return dash.no_update, dash.no_update, dash.no_update, dash.no_update
trigger_id = ctx.triggered[0]['prop_id'].split('.')[0]
if trigger_id == "generate-script-btn":
try:
api_key = os.environ.get("GEMINI_API_KEY")
if not api_key:
raise ValueError("Gemini API key not found in environment variables")
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
combined_content = prompt or ""
if uploaded_file:
content_type, content_string = uploaded_file.split(',')
decoded = base64.b64decode(content_string)
file_bytes = io.BytesIO(decoded)
file_bytes.seek(0)
if file_bytes.read(4) == b'%PDF':
file_bytes.seek(0)
pdf_reader = PyPDF2.PdfReader(file_bytes)
file_content = "\n".join([page.extract_text() for page in pdf_reader.pages])
else:
file_bytes.seek(0)
try:
file_content = file_bytes.read().decode('utf-8')
except UnicodeDecodeError:
file_bytes.seek(0)
try:
doc = Document(file_bytes)
file_content = "\n".join([para.text for para in doc.paragraphs])
except:
raise ValueError("Unsupported file type or corrupted file")
combined_content += "\n" + file_content if combined_content else file_content
num_hosts = int(num_hosts) if num_hosts else 1
prompt_template = f"""
Create a podcast script for {num_hosts} {'person' if num_hosts == 1 else 'people'} discussing:
{combined_content}
Duration: {duration} minutes. Include natural speech, humor, and occasional off-topic thoughts.
Use speech fillers like um, ah. Vary emotional tone.
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
If the number of {num_hosts} is 1 then each paragraph will be no more than 3 sentences each
Only provide the dialog for text to speech.
Only use these emotion tags in angle brackets: {', '.join(EMOTIVE_TAGS)}.
-Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
Ensure content flows naturally and stays on topic. Match the script length to {duration} minutes.
Do not include speaker labels like "jane:" or "john:" before dialogue.
The intro always includes the ({host1_name} and/or {host2_name}) if it exists and should be in the same paragraph.
The outro always includes the ({host1_name} and/or {host2_name}) if it exists and should be in the same paragraph
Do not include these types of transitions in the intro, outro or between paragraphs for example: "Intro Music fades in...". Its just dialog.
Keep each speaker's entire monologue in a single paragraph, regardless of length if the number of hosts is not 1.
Start a new paragraph only when switching to a different speaker if the number of hosts is not 1.
Maintain natural conversation flow and speech patterns within each monologue.
Use context clues or subtle references to indicate who is speaking without explicit labels if the number of hosts is not 1.
Use speaker names ({host1_name} and/or {host2_name}) sparingly, only when necessary for clarity or emphasis. Avoid starting every line with the other person's name.
Rely more on context and speech patterns to indicate who is speaking, rather than always stating names.
Use names primarily for transitions sparingly, definitely with agreements, or to draw attention to a specific point, not as a constant form of address.
{'Make sure the script is a monologue for one person.' if num_hosts == 1 else f'Ensure the dialogue alternates between two distinct voices, with {host1_name} speaking on odd-numbered lines and {host2_name} on even-numbered lines.'}
Always include intro with the speaker name and its the podcast name "{podcast_name}" in intoduce the topic of the podcast with "{podcast_topic}".
Incorporate the podcast name and topic naturally into the intro and outro, and ensure the content stays relevant to the specified topic throughout the script.
"""
response = model.generate_content(prompt_template)
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text), dash.no_update, dash.no_update, dash.no_update
except Exception as e:
logger.error(f"Error generating podcast script: {str(e)}")
return f"Error: {str(e)}", dash.no_update, dash.no_update, dash.no_update
elif trigger_id == "generate-audio-btn":
if not script_output.strip():
return dash.no_update, html.Div("No audio generated yet."), dash.no_update, dash.no_update
final_audio = generate_audio(script_output, voice1, voice2, num_hosts, temperature, top_p, repetition_penalty, max_new_tokens)
if final_audio is not None:
# Convert to base64 for audio playback
audio_base64 = base64.b64encode(final_audio.tobytes()).decode('utf-8')
src = f"data:audio/wav;base64,{audio_base64}"
# Create a download link for the audio
download_link = html.A("Download Audio", href=src, download="generated_audio.wav")
return dash.no_update, html.Div([
html.Audio(src=src, controls=True),
html.Br(),
download_link
]), dash.no_update, dash.no_update
else:
return dash.no_update, html.Div("Error generating audio"), dash.no_update, dash.no_update
elif trigger_id == "advanced-settings-toggle":
return dash.no_update, dash.no_update, not is_advanced_open, dash.no_update
elif trigger_id == "clear-btn":
return "", html.Div("No audio generated yet."), dash.no_update, ""
return dash.no_update, dash.no_update, dash.no_update, dash.no_update
# Run the app
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860)
print("Dash application has finished running.") |