EFDM / test.py
biubiubiiu's picture
add EFDM
c9b624b
raw
history blame
11.3 kB
import argparse
from pathlib import Path
import torch
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from torchvision.utils import save_image
import time
import net
from function import adaptive_instance_normalization, coral
from function import adaptive_mean_normalization
from function import adaptive_std_normalization
from function import exact_feature_distribution_matching, histogram_matching
def test_transform(size, crop):
transform_list = []
if size != 0:
transform_list.append(transforms.Resize(size))
if crop:
transform_list.append(transforms.CenterCrop(size))
transform_list.append(transforms.ToTensor())
transform = transforms.Compose(transform_list)
return transform
def style_transfer(vgg, decoder, content, style, alpha=1.0,
interpolation_weights=None, style_type='adain'):
assert (0.0 <= alpha <= 1.0)
content_f = vgg(content)
style_f = vgg(style)
if interpolation_weights:
_, C, H, W = content_f.size()
feat = torch.FloatTensor(1, C, H, W).zero_().to(device)
if style_type == 'adain':
base_feat = adaptive_instance_normalization(content_f, style_f)
elif style_type == 'adamean':
base_feat = adaptive_mean_normalization(content_f, style_f)
elif style_type == 'adastd':
base_feat = adaptive_std_normalization(content_f, style_f)
elif style_type == 'efdm':
base_feat = exact_feature_distribution_matching(content_f, style_f)
elif style_type == 'hm':
feat = histogram_matching(content_f, style_f)
else:
raise NotImplementedError
for i, w in enumerate(interpolation_weights):
feat = feat + w * base_feat[i:i + 1]
content_f = content_f[0:1]
else:
if style_type == 'adain':
feat = adaptive_instance_normalization(content_f, style_f)
elif style_type == 'adamean':
feat = adaptive_mean_normalization(content_f, style_f)
elif style_type == 'adastd':
feat = adaptive_std_normalization(content_f, style_f)
elif style_type == 'efdm':
feat = exact_feature_distribution_matching(content_f, style_f)
elif style_type == 'hm':
feat = histogram_matching(content_f, style_f)
else:
raise NotImplementedError
feat = feat * alpha + content_f * (1 - alpha)
return decoder(feat)
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content', type=str,
help='File path to the content image')
parser.add_argument('--content_dir', type=str,
help='Directory path to a batch of content images')
parser.add_argument('--style', type=str,
help='File path to the style image, or multiple style \
images separated by commas if you want to do style \
interpolation or spatial control')
parser.add_argument('--style_dir', type=str,
help='Directory path to a batch of style images')
parser.add_argument('--vgg', type=str, default='pretrained/vgg_normalised.pth')
parser.add_argument('--decoder', type=str, default='pretrained/efdm_decoder_iter_160000.pth.tar')
parser.add_argument('--style_type', type=str, default='adain', help='adain | adamean | adastd | efdm')
parser.add_argument('--test_style_type', type=str, default='', help='adain | adamean | adastd | efdm')
# Additional options
parser.add_argument('--content_size', type=int, default=512,
help='New (minimum) size for the content image, \
keeping the original size if set to 0')
parser.add_argument('--style_size', type=int, default=512,
help='New (minimum) size for the style image, \
keeping the original size if set to 0')
parser.add_argument('--crop', action='store_true',
help='do center crop to create squared image')
parser.add_argument('--save_ext', default='.jpg',
help='The extension name of the output image')
parser.add_argument('--output', type=str, default='output',
help='Directory to save the output image(s)')
parser.add_argument('--photo', action='store_true',
help='apply on the photo style transfer')
# Advanced options
parser.add_argument('--preserve_color', action='store_true',
help='If specified, preserve color of the content image')
parser.add_argument('--alpha', type=float, default=1.0,
help='The weight that controls the degree of \
stylization. Should be between 0 and 1')
parser.add_argument(
'--style_interpolation_weights', type=str, default='',
help='The weight for blending the style of multiple style images')
args = parser.parse_args()
if not args.test_style_type:
args.test_style_type = args.style_type
print('Note: the style type: %s and the pre-trained model: %s should be consistent' % (args.style_type, args.decoder))
print('The test style type is:', args.test_style_type)
do_interpolation = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
output_dir = Path(args.output + '_' + args.style_type + '_' + args.test_style_type)
output_dir.mkdir(exist_ok=True, parents=True)
# Either --content or --contentDir should be given.
assert (args.content or args.content_dir)
if args.content:
content_paths = [Path(args.content)]
else:
content_dir = Path(args.content_dir)
content_paths = [f for f in content_dir.glob('*')]
# Either --style or --styleDir should be given.
assert (args.style or args.style_dir)
if args.style:
style_paths = args.style.split(',')
if len(style_paths) == 1:
style_paths = [Path(args.style)]
else:
do_interpolation = True
# assert (args.style_interpolation_weights != ''), \
# 'Please specify interpolation weights'
# weights = [int(i) for i in args.style_interpolation_weights.split(',')]
# interpolation_weights = [w / sum(weights) for w in weights]
else:
style_dir = Path(args.style_dir)
style_paths = [f for f in style_dir.glob('*')]
decoder = net.decoder
vgg = net.vgg
decoder.eval()
vgg.eval()
decoder.load_state_dict(torch.load(args.decoder))
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:31])
vgg.to(device)
decoder.to(device)
content_tf = test_transform(args.content_size, args.crop)
style_tf = test_transform(args.style_size, args.crop)
timer = []
for content_path in content_paths:
if do_interpolation:
# one content image, 4 style image
style = torch.stack([style_tf(Image.open(str(p))) for p in style_paths])
content = content_tf(Image.open(str(content_path))) \
.unsqueeze(0).expand_as(style)
style = style.to(device)
content = content.to(device)
list = []
steps = [1, 0.75, 0.5, 0.25, 0]
for i in steps:
for j in steps:
list.append([i*j, i*(1-j), (1-i)*j, (1-i)*(1-j)])
count = 1
for interpolation_weights in list:
with torch.no_grad():
output = style_transfer(vgg, decoder, content, style,
args.alpha, interpolation_weights, style_type=args.test_style_type)
output = output.cpu()
output_name = output_dir / '{:s}_interpolate_{:s}_{:s}'.format(
content_path.stem, str(count), args.save_ext)
save_image(output, str(output_name))
count+=1
#### content & style trade-off.
# alpha = [0.0, 0.25, 0.5, 0.75, 1.0]
# for style_path in style_paths:
# content = content_tf(Image.open(str(content_path)))
# style = style_tf(Image.open(str(style_path)))
# if args.preserve_color:
# style = coral(style, content)
# style = style.to(device).unsqueeze(0)
# content = content.to(device).unsqueeze(0)
# ## replace the style image with Gaussian noise
# # style.normal_(0,1)
# # style = torch.rand(style.size()).to(device)
# ### for paired images.
# if args.photo:
# if content_path.stem[2:] == style_path.stem[3:]:
# for sample_alpha in alpha:
# with torch.no_grad():
# output = style_transfer(vgg, decoder, content, style,
# sample_alpha, style_type=args.test_style_type)
# output = output.cpu()
# output_name = output_dir / '{:s}_stylized_{:s}{:s}{:s}'.format(
# content_path.stem, style_path.stem, str(sample_alpha), args.save_ext)
# save_image(output, str(output_name))
# else:
# for sample_alpha in alpha:
# with torch.no_grad():
# output = style_transfer(vgg, decoder, content, style,
# sample_alpha, style_type=args.test_style_type)
# output = output.cpu()
# output_name = output_dir / '{:s}_stylized_{:s}{:s}{:s}'.format(
# content_path.stem, style_path.stem, str(sample_alpha), args.save_ext)
# save_image(output, str(output_name))
else: # process one content and one style
for style_path in style_paths:
content = content_tf(Image.open(str(content_path)))
style = style_tf(Image.open(str(style_path)))
if args.preserve_color:
style = coral(style, content)
style = style.to(device).unsqueeze(0)
content = content.to(device).unsqueeze(0)
## replace the style image with Gaussian noise
# style.normal_(0,1)
# style = torch.rand(style.size()).to(device)
### for paired images.
if args.photo:
if content_path.stem[2:] == style_path.stem[3:]:
with torch.no_grad():
start_time = time.time()
output = style_transfer(vgg, decoder, content, style,
args.alpha, style_type=args.test_style_type)
timer.append(time.time() - start_time)
print(timer)
output = output.cpu()
output_name = output_dir / '{:s}_stylized_{:s}{:s}'.format(
content_path.stem, style_path.stem, args.save_ext)
save_image(output, str(output_name))
else:
with torch.no_grad():
output = style_transfer(vgg, decoder, content, style,
args.alpha, style_type=args.test_style_type)
output = output.cpu()
output_name = output_dir / '{:s}_stylized_{:s}{:s}'.format(
content_path.stem, style_path.stem, args.save_ext)
save_image(output, str(output_name))
print(torch.FloatTensor(timer).mean())