File size: 11,336 Bytes
c9b624b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import argparse
from pathlib import Path

import torch
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from torchvision.utils import save_image
import time
import net
from function import adaptive_instance_normalization, coral
from function import adaptive_mean_normalization
from function import adaptive_std_normalization
from function import exact_feature_distribution_matching, histogram_matching

def test_transform(size, crop):
    transform_list = []
    if size != 0:
        transform_list.append(transforms.Resize(size))
    if crop:
        transform_list.append(transforms.CenterCrop(size))
    transform_list.append(transforms.ToTensor())
    transform = transforms.Compose(transform_list)
    return transform


def style_transfer(vgg, decoder, content, style, alpha=1.0,
                   interpolation_weights=None, style_type='adain'):
    assert (0.0 <= alpha <= 1.0)
    content_f = vgg(content)
    style_f = vgg(style)
    if interpolation_weights:
        _, C, H, W = content_f.size()
        feat = torch.FloatTensor(1, C, H, W).zero_().to(device)
        if style_type == 'adain':
            base_feat = adaptive_instance_normalization(content_f, style_f)
        elif style_type == 'adamean':
            base_feat = adaptive_mean_normalization(content_f, style_f)
        elif style_type == 'adastd':
            base_feat = adaptive_std_normalization(content_f, style_f)
        elif style_type == 'efdm':
            base_feat = exact_feature_distribution_matching(content_f, style_f)
        elif style_type == 'hm':
            feat = histogram_matching(content_f, style_f)
        else:
            raise NotImplementedError
        for i, w in enumerate(interpolation_weights):
            feat = feat + w * base_feat[i:i + 1]
        content_f = content_f[0:1]
    else:
        if style_type == 'adain':
            feat = adaptive_instance_normalization(content_f, style_f)
        elif style_type == 'adamean':
            feat = adaptive_mean_normalization(content_f, style_f)
        elif style_type == 'adastd':
            feat = adaptive_std_normalization(content_f, style_f)
        elif style_type == 'efdm':
            feat = exact_feature_distribution_matching(content_f, style_f)
        elif style_type == 'hm':
            feat = histogram_matching(content_f, style_f)
        else:
            raise NotImplementedError
    feat = feat * alpha + content_f * (1 - alpha)
    return decoder(feat)


parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content', type=str,
                    help='File path to the content image')
parser.add_argument('--content_dir', type=str,
                    help='Directory path to a batch of content images')
parser.add_argument('--style', type=str,
                    help='File path to the style image, or multiple style \
                    images separated by commas if you want to do style \
                    interpolation or spatial control')
parser.add_argument('--style_dir', type=str,
                    help='Directory path to a batch of style images')
parser.add_argument('--vgg', type=str, default='pretrained/vgg_normalised.pth')
parser.add_argument('--decoder', type=str, default='pretrained/efdm_decoder_iter_160000.pth.tar')
parser.add_argument('--style_type', type=str, default='adain', help='adain | adamean | adastd | efdm')
parser.add_argument('--test_style_type', type=str, default='', help='adain | adamean | adastd | efdm')
# Additional options
parser.add_argument('--content_size', type=int, default=512,
                    help='New (minimum) size for the content image, \
                    keeping the original size if set to 0')
parser.add_argument('--style_size', type=int, default=512,
                    help='New (minimum) size for the style image, \
                    keeping the original size if set to 0')
parser.add_argument('--crop', action='store_true',
                    help='do center crop to create squared image')
parser.add_argument('--save_ext', default='.jpg',
                    help='The extension name of the output image')
parser.add_argument('--output', type=str, default='output',
                    help='Directory to save the output image(s)')
parser.add_argument('--photo', action='store_true',
                    help='apply on the photo style transfer')
# Advanced options
parser.add_argument('--preserve_color', action='store_true',
                    help='If specified, preserve color of the content image')
parser.add_argument('--alpha', type=float, default=1.0,
                    help='The weight that controls the degree of \
                             stylization. Should be between 0 and 1')
parser.add_argument(
    '--style_interpolation_weights', type=str, default='',
    help='The weight for blending the style of multiple style images')

args = parser.parse_args()
if not args.test_style_type:
    args.test_style_type = args.style_type

print('Note: the style type: %s and the pre-trained model: %s should be consistent' % (args.style_type, args.decoder))
print('The test style type is:', args.test_style_type)

do_interpolation = False

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

output_dir = Path(args.output + '_' + args.style_type + '_' + args.test_style_type)
output_dir.mkdir(exist_ok=True, parents=True)

# Either --content or --contentDir should be given.
assert (args.content or args.content_dir)
if args.content:
    content_paths = [Path(args.content)]
else:
    content_dir = Path(args.content_dir)
    content_paths = [f for f in content_dir.glob('*')]

# Either --style or --styleDir should be given.
assert (args.style or args.style_dir)
if args.style:
    style_paths = args.style.split(',')
    if len(style_paths) == 1:
        style_paths = [Path(args.style)]
    else:
        do_interpolation = True
        # assert (args.style_interpolation_weights != ''), \
        #     'Please specify interpolation weights'
        # weights = [int(i) for i in args.style_interpolation_weights.split(',')]
        # interpolation_weights = [w / sum(weights) for w in weights]
else:
    style_dir = Path(args.style_dir)
    style_paths = [f for f in style_dir.glob('*')]

decoder = net.decoder
vgg = net.vgg

decoder.eval()
vgg.eval()

decoder.load_state_dict(torch.load(args.decoder))
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:31])

vgg.to(device)
decoder.to(device)

content_tf = test_transform(args.content_size, args.crop)
style_tf = test_transform(args.style_size, args.crop)

timer = []
for content_path in content_paths:
    if do_interpolation:
        # one content image, 4 style image
        style = torch.stack([style_tf(Image.open(str(p))) for p in style_paths])
        content = content_tf(Image.open(str(content_path))) \
            .unsqueeze(0).expand_as(style)
        style = style.to(device)
        content = content.to(device)
        list = []
        steps = [1, 0.75, 0.5, 0.25, 0]
        for i in steps:
            for j in steps:
                list.append([i*j, i*(1-j), (1-i)*j, (1-i)*(1-j)])
        count = 1
        for interpolation_weights in list:
            with torch.no_grad():
                output = style_transfer(vgg, decoder, content, style,
                                        args.alpha, interpolation_weights, style_type=args.test_style_type)
            output = output.cpu()
            output_name = output_dir / '{:s}_interpolate_{:s}_{:s}'.format(
                content_path.stem, str(count), args.save_ext)
            save_image(output, str(output_name))
            count+=1

        #### content & style trade-off.
        # alpha = [0.0, 0.25, 0.5, 0.75, 1.0]
        # for style_path in style_paths:
        #     content = content_tf(Image.open(str(content_path)))
        #     style = style_tf(Image.open(str(style_path)))
        #     if args.preserve_color:
        #         style = coral(style, content)
        #     style = style.to(device).unsqueeze(0)
        #     content = content.to(device).unsqueeze(0)
        #     ## replace the style image with Gaussian noise
        #     # style.normal_(0,1)
        #     # style = torch.rand(style.size()).to(device)
        #     ### for paired images.
        #     if args.photo:
        #         if content_path.stem[2:] == style_path.stem[3:]:
        #             for sample_alpha in alpha:
        #                 with torch.no_grad():
        #                     output = style_transfer(vgg, decoder, content, style,
        #                                             sample_alpha, style_type=args.test_style_type)
        #                 output = output.cpu()
        #                 output_name = output_dir / '{:s}_stylized_{:s}{:s}{:s}'.format(
        #                     content_path.stem, style_path.stem, str(sample_alpha), args.save_ext)
        #                 save_image(output, str(output_name))
        #     else:
        #         for sample_alpha in alpha:
        #             with torch.no_grad():
        #                 output = style_transfer(vgg, decoder, content, style,
        #                                         sample_alpha, style_type=args.test_style_type)
        #             output = output.cpu()
        #             output_name = output_dir / '{:s}_stylized_{:s}{:s}{:s}'.format(
        #                 content_path.stem, style_path.stem, str(sample_alpha), args.save_ext)
        #             save_image(output, str(output_name))
    else:  # process one content and one style
        for style_path in style_paths:
            content = content_tf(Image.open(str(content_path)))
            style = style_tf(Image.open(str(style_path)))
            if args.preserve_color:
                style = coral(style, content)
            style = style.to(device).unsqueeze(0)
            content = content.to(device).unsqueeze(0)
            ## replace the style image with Gaussian noise
            # style.normal_(0,1)
            # style = torch.rand(style.size()).to(device)
            ### for paired images.
            if args.photo:
                if content_path.stem[2:] == style_path.stem[3:]:
                    with torch.no_grad():
                        start_time = time.time()
                        output = style_transfer(vgg, decoder, content, style,
                                                args.alpha, style_type=args.test_style_type)
                        timer.append(time.time() - start_time)
                        print(timer)

                    output = output.cpu()
                    output_name = output_dir / '{:s}_stylized_{:s}{:s}'.format(
                        content_path.stem, style_path.stem, args.save_ext)
                    save_image(output, str(output_name))
            else:
                with torch.no_grad():
                    output = style_transfer(vgg, decoder, content, style,
                                            args.alpha, style_type=args.test_style_type)
                output = output.cpu()
                output_name = output_dir / '{:s}_stylized_{:s}{:s}'.format(
                    content_path.stem, style_path.stem, args.save_ext)
                save_image(output, str(output_name))
print(torch.FloatTensor(timer).mean())