Spaces:
Runtime error
Runtime error
File size: 36,690 Bytes
8500b5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 |
import os
import logging
import numpy as np
import torch
from torch import nn
import pandas as pd
from torchvision import transforms, models
from PIL import Image
import faiss
from transformers import AutoTokenizer, AutoModel, T5ForConditionalGeneration, T5Tokenizer
import gradio as gr
import cv2
import traceback
from datetime import datetime
import re
import random
import functools
import gc
from collections import OrderedDict
import json
import sys
import time
from tqdm.auto import tqdm
import warnings
import matplotlib.pyplot as plt
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict, Any, Union
import base64
import io
# Suppress unnecessary warnings
warnings.filterwarnings("ignore", category=UserWarning)
# === Configuration ===
class Config:
"""Configuration for MediQuery system"""
# Model configuration
IMAGE_MODEL = "chexnet" # Options: "chexnet", "densenet"
TEXT_MODEL = "biobert" # Options: "biobert", "clinicalbert"
GEN_MODEL = "flan-t5-base-finetuned" # Base generation model
# Resource management
CACHE_SIZE = 50 # Reduced from 200 for deployment
CACHE_EXPIRY_TIME = 1800 # Cache expiry time in seconds (30 minutes)
LAZY_LOADING = True # Enable lazy loading of models
USE_HALF_PRECISION = True # Use half precision for models if available
# Feature flags
DEBUG = True # Enable detailed debugging
PHI_DETECTION_ENABLED = True # Enable PHI detection
ANATOMY_MAPPING_ENABLED = True # Enable anatomical mapping
# Thresholds and parameters
CONFIDENCE_THRESHOLD = 0.4 # Threshold for flagging low confidence
TOP_K_RETRIEVAL = 10 # Reduced from 30 for deployment
MAX_CONTEXT_DOCS = 3 # Reduced from 5 for deployment
# Advanced retrieval settings
DYNAMIC_RERANKING = True # Dynamically adjust reranking weights
DIVERSITY_PENALTY = 0.1 # Penalty for duplicate content
# Performance optimization
BATCH_SIZE = 1 # Reduced from 4 for deployment
OPTIMIZE_MEMORY = True # Optimize memory usage
USE_CACHING = True # Use caching for embeddings and queries
# Path settings
DEFAULT_KNOWLEDGE_BASE_DIR = "./knowledge_base"
DEFAULT_MODEL_PATH = "./models/flan-t5-finetuned"
LOG_DIR = "./logs"
# Advanced settings
EMBEDDING_AGGREGATION = "weighted_avg" # Options: "avg", "weighted_avg", "cls", "pooled"
EMBEDDING_NORMALIZE = True # Normalize embeddings to unit length
# Error recovery settings
MAX_RETRIES = 2 # Reduced from 3 for deployment
RECOVERY_WAIT_TIME = 1 # Seconds to wait between retries
# Set up logging with improved formatting
os.makedirs(Config.LOG_DIR, exist_ok=True)
logging.basicConfig(
level=logging.DEBUG if Config.DEBUG else logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(os.path.join(Config.LOG_DIR, f"mediquery_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")),
logging.StreamHandler()
]
)
logger = logging.getLogger("MediQuery")
def debug_print(msg):
"""Print and log debug messages"""
if Config.DEBUG:
logger.debug(msg)
print(f"DEBUG: {msg}")
# === Helper Functions for Conditions ===
def get_mimic_cxr_conditions():
"""Return the comprehensive list of conditions in MIMIC-CXR dataset"""
return [
"atelectasis",
"cardiomegaly",
"consolidation",
"edema",
"enlarged cardiomediastinum",
"fracture",
"lung lesion",
"lung opacity",
"no finding",
"pleural effusion",
"pleural other",
"pneumonia",
"pneumothorax",
"support devices"
]
def get_condition_synonyms():
"""Return synonyms for conditions to improve matching"""
return {
"atelectasis": ["atelectatic change", "collapsed lung", "lung collapse"],
"cardiomegaly": ["enlarged heart", "cardiac enlargement", "heart enlargement"],
"consolidation": ["airspace opacity", "air-space opacity", "alveolar opacity"],
"edema": ["pulmonary edema", "fluid overload", "vascular congestion"],
"fracture": ["broken bone", "bone fracture", "rib fracture"],
"lung opacity": ["pulmonary opacity", "opacification", "lung opacification"],
"pleural effusion": ["pleural fluid", "fluid in pleural space", "effusion"],
"pneumonia": ["pulmonary infection", "lung infection", "bronchopneumonia"],
"pneumothorax": ["air in pleural space", "collapsed lung", "ptx"],
"support devices": ["tube", "line", "catheter", "pacemaker", "device"]
}
def get_anatomical_regions():
"""Return mapping of anatomical regions with descriptions and conditions"""
return {
"upper_right_lung": {
"description": "Upper right lung field",
"conditions": ["pneumonia", "lung lesion", "pneumothorax", "atelectasis"]
},
"upper_left_lung": {
"description": "Upper left lung field",
"conditions": ["pneumonia", "lung lesion", "pneumothorax", "atelectasis"]
},
"middle_right_lung": {
"description": "Middle right lung field",
"conditions": ["pneumonia", "lung opacity", "atelectasis"]
},
"lower_right_lung": {
"description": "Lower right lung field",
"conditions": ["pneumonia", "pleural effusion", "atelectasis"]
},
"lower_left_lung": {
"description": "Lower left lung field",
"conditions": ["pneumonia", "pleural effusion", "atelectasis"]
},
"heart": {
"description": "Cardiac silhouette",
"conditions": ["cardiomegaly", "enlarged cardiomediastinum"]
},
"hilar": {
"description": "Hilar regions",
"conditions": ["enlarged cardiomediastinum", "adenopathy"]
},
"costophrenic_angles": {
"description": "Costophrenic angles",
"conditions": ["pleural effusion", "pneumothorax"]
},
"spine": {
"description": "Spine",
"conditions": ["fracture", "degenerative changes"]
},
"diaphragm": {
"description": "Diaphragm",
"conditions": ["elevated diaphragm", "flattened diaphragm"]
}
}
# === PHI Detection and Anonymization ===
def detect_phi(text):
"""Detect potential PHI (Protected Health Information) in text"""
# Patterns for PHI detection
patterns = {
'name': r'\b[A-Z][a-z]+ [A-Z][a-z]+\b',
'mrn': r'\b[A-Z]{0,3}[0-9]{4,10}\b',
'ssn': r'\b[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}\b',
'date': r'\b(0?[1-9]|1[0-2])[\/\-](0?[1-9]|[12]\d|3[01])[\/\-](19|20)\d{2}\b',
'phone': r'\b(\+\d{1,2}\s?)?\(?\d{3}\)?[\s.-]?\d{3}[\s.-]?\d{4}\b',
'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
'address': r'\b\d+\s+[A-Z][a-z]+\s+[A-Z][a-z]+\.?\b'
}
# Check each pattern
phi_detected = {}
for phi_type, pattern in patterns.items():
matches = re.findall(pattern, text)
if matches:
phi_detected[phi_type] = matches
return phi_detected
def anonymize_text(text):
"""Replace potential PHI with [REDACTED]"""
if not text:
return ""
if not Config.PHI_DETECTION_ENABLED:
return text
try:
# Detect PHI
phi_detected = detect_phi(text)
# Replace PHI with [REDACTED]
anonymized = text
for phi_type, matches in phi_detected.items():
for match in matches:
anonymized = anonymized.replace(match, "[REDACTED]")
return anonymized
except Exception as e:
debug_print(f"Error in anonymize_text: {str(e)}")
return text
# === LRU Cache Implementation with Enhanced Features ===
class LRUCache:
"""LRU (Least Recently Used) Cache implementation with TTL and size tracking"""
def __init__(self, capacity=Config.CACHE_SIZE, expiry_time=Config.CACHE_EXPIRY_TIME):
self.cache = OrderedDict()
self.capacity = capacity
self.expiry_time = expiry_time # in seconds
self.timestamps = {}
self.size_tracking = {
"current_size_bytes": 0,
"max_size_bytes": 0,
"items_evicted": 0,
"cache_hits": 0,
"cache_misses": 0
}
def get(self, key):
"""Get item from cache with statistics tracking"""
if key not in self.cache:
self.size_tracking["cache_misses"] += 1
return None
# Check expiry
if self.is_expired(key):
self._remove_with_tracking(key)
self.size_tracking["cache_misses"] += 1
return None
# Move to end (recently used)
self.size_tracking["cache_hits"] += 1
value = self.cache.pop(key)
self.cache[key] = value
return value
def put(self, key, value):
"""Add item to cache with size tracking"""
# Calculate approximate size of the value
value_size = self._estimate_size(value)
if key in self.cache:
old_value = self.cache.pop(key)
old_size = self._estimate_size(old_value)
self.size_tracking["current_size_bytes"] -= old_size
# Make space if needed
while len(self.cache) >= self.capacity or (
Config.OPTIMIZE_MEMORY and
self.size_tracking["current_size_bytes"] + value_size > 1e9 # 1 GB limit
):
self._evict_least_recently_used()
# Add new item and timestamp
self.cache[key] = value
self.timestamps[key] = datetime.now().timestamp()
self.size_tracking["current_size_bytes"] += value_size
# Update max size
if self.size_tracking["current_size_bytes"] > self.size_tracking["max_size_bytes"]:
self.size_tracking["max_size_bytes"] = self.size_tracking["current_size_bytes"]
def is_expired(self, key):
"""Check if item has expired"""
if key not in self.timestamps:
return True
current_time = datetime.now().timestamp()
return (current_time - self.timestamps[key]) > self.expiry_time
def _evict_least_recently_used(self):
"""Remove least recently used item with tracking"""
if not self.cache:
return
# Get oldest item
key, value = self.cache.popitem(last=False)
# Remove from timestamps and update tracking
self._remove_with_tracking(key)
def _remove_with_tracking(self, key):
"""Remove item with size tracking"""
if key in self.cache:
value = self.cache.pop(key)
value_size = self._estimate_size(value)
self.size_tracking["current_size_bytes"] -= value_size
self.size_tracking["items_evicted"] += 1
if key in self.timestamps:
self.timestamps.pop(key)
def remove(self, key):
"""Remove item from cache"""
self._remove_with_tracking(key)
def clear(self):
"""Clear the cache"""
self.cache.clear()
self.timestamps.clear()
self.size_tracking["current_size_bytes"] = 0
def get_stats(self):
"""Get cache statistics"""
return {
"size_bytes": self.size_tracking["current_size_bytes"],
"max_size_bytes": self.size_tracking["max_size_bytes"],
"items": len(self.cache),
"capacity": self.capacity,
"items_evicted": self.size_tracking["items_evicted"],
"hit_rate": self.size_tracking["cache_hits"] /
(self.size_tracking["cache_hits"] + self.size_tracking["cache_misses"] + 1e-8)
}
def _estimate_size(self, obj):
"""Estimate memory size of an object in bytes"""
if obj is None:
return 0
if isinstance(obj, np.ndarray):
return obj.nbytes
elif isinstance(obj, torch.Tensor):
return obj.element_size() * obj.nelement()
elif isinstance(obj, (str, bytes)):
return len(obj)
elif isinstance(obj, (list, tuple)):
return sum(self._estimate_size(x) for x in obj)
elif isinstance(obj, dict):
return sum(self._estimate_size(k) + self._estimate_size(v) for k, v in obj.items())
else:
# Fallback - rough estimate
return sys.getsizeof(obj)
# === Improved Lazy Model Loading ===
class LazyModel:
"""Lazy loading wrapper for models with proper method forwarding and error recovery"""
def __init__(self, model_name, model_class, device, **kwargs):
self.model_name = model_name
self.model_class = model_class
self.device = device
self.kwargs = kwargs
self._model = None
self.last_error = None
self.last_used = datetime.now()
debug_print(f"LazyModel initialized for {model_name}")
def _ensure_loaded(self, retries=Config.MAX_RETRIES):
"""Ensure model is loaded with retry mechanism"""
if self._model is None:
debug_print(f"Lazy loading model: {self.model_name}")
for attempt in range(retries):
try:
self._model = self.model_class.from_pretrained(self.model_name, **self.kwargs)
# Apply memory optimizations
if Config.OPTIMIZE_MEMORY:
# Convert to half precision if available and enabled
if Config.USE_HALF_PRECISION and self.device.type == 'cuda' and hasattr(self._model, 'half'):
self._model = self._model.half()
debug_print(f"Using half precision for {self.model_name}")
self._model = self._model.to(self.device)
self._model.eval() # Set to evaluation mode
debug_print(f"Model {self.model_name} loaded successfully")
self.last_error = None
break
except Exception as e:
self.last_error = str(e)
debug_print(f"Error loading model {self.model_name} (attempt {attempt+1}/{retries}): {str(e)}")
if attempt < retries - 1:
# Wait before retrying
time.sleep(Config.RECOVERY_WAIT_TIME)
else:
raise RuntimeError(f"Failed to load model {self.model_name} after {retries} attempts: {str(e)}")
# Update last used timestamp
self.last_used = datetime.now()
return self._model
def __call__(self, *args, **kwargs):
"""Call the model"""
model = self._ensure_loaded()
return model(*args, **kwargs)
# Forward common model methods
def generate(self, *args, **kwargs):
"""Forward generate method to model with error recovery"""
model = self._ensure_loaded()
try:
return model.generate(*args, **kwargs)
except Exception as e:
# If generation fails, try reloading the model once
debug_print(f"Generation failed, reloading model: {str(e)}")
self.unload()
model = self._ensure_loaded()
return model.generate(*args, **kwargs)
def to(self, device):
"""Move model to specified device"""
self.device = device
if self._model is not None:
self._model = self._model.to(device)
return self
def eval(self):
"""Set model to evaluation mode"""
if self._model is not None:
self._model.eval()
return self
def unload(self):
"""Unload model from memory"""
if self._model is not None:
del self._model
self._model = None
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
debug_print(f"Model {self.model_name} unloaded")
# === MediQuery Core System ===
class MediQuery:
"""Core MediQuery system for medical image and text analysis"""
def __init__(self, knowledge_base_dir=Config.DEFAULT_KNOWLEDGE_BASE_DIR, model_path=Config.DEFAULT_MODEL_PATH):
self.knowledge_base_dir = knowledge_base_dir
self.model_path = model_path
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
debug_print(f"Using device: {self.device}")
# Create directories if they don't exist
os.makedirs(knowledge_base_dir, exist_ok=True)
os.makedirs(os.path.dirname(model_path), exist_ok=True)
# Initialize caches
self.embedding_cache = LRUCache(capacity=Config.CACHE_SIZE)
self.query_cache = LRUCache(capacity=Config.CACHE_SIZE)
# Initialize models
self._init_models()
# Load knowledge base
self._init_knowledge_base()
debug_print("MediQuery system initialized")
def _init_models(self):
"""Initialize all required models with lazy loading"""
debug_print("Initializing models...")
# Image model
if Config.IMAGE_MODEL == "chexnet":
self.image_model = models.densenet121(pretrained=False)
# For deployment, we'll download the weights during initialization
try:
# Simplified for deployment - would need to download weights
self.image_model = nn.Sequential(*list(self.image_model.children())[:-1])
debug_print("CheXNet model initialized")
except Exception as e:
debug_print(f"Error initializing CheXNet: {str(e)}")
# Fallback to standard DenseNet
self.image_model = nn.Sequential(*list(models.densenet121(pretrained=True).children())[:-1])
else:
self.image_model = nn.Sequential(*list(models.densenet121(pretrained=True).children())[:-1])
self.image_model = self.image_model.to(self.device).eval()
# Text model - lazy loaded
text_model_name = "dmis-lab/biobert-v1.1" if Config.TEXT_MODEL == "biobert" else "emilyalsentzer/Bio_ClinicalBERT"
self.text_tokenizer = AutoTokenizer.from_pretrained(text_model_name)
self.text_model = LazyModel(
text_model_name,
AutoModel,
self.device
)
# Generation model - lazy loaded
if os.path.exists(self.model_path):
gen_model_path = self.model_path
else:
gen_model_path = "google/flan-t5-base" # Fallback to base model
self.gen_tokenizer = T5Tokenizer.from_pretrained(gen_model_path)
self.gen_model = LazyModel(
gen_model_path,
T5ForConditionalGeneration,
self.device
)
# Image transformation
self.image_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
debug_print("Models initialized")
def _init_knowledge_base(self):
"""Initialize knowledge base with FAISS indices"""
debug_print("Initializing knowledge base...")
# For deployment, we'll create a minimal knowledge base
# In a real deployment, you would download the knowledge base files
# Create dummy knowledge base for demonstration
self.text_data = pd.DataFrame({
'combined_text': [
"The chest X-ray shows clear lung fields with no evidence of consolidation, effusion, or pneumothorax. The heart size is normal. No acute cardiopulmonary abnormality.",
"Bilateral patchy airspace opacities consistent with multifocal pneumonia. No pleural effusion or pneumothorax. Heart size is normal.",
"Cardiomegaly with pulmonary vascular congestion and bilateral pleural effusions, consistent with congestive heart failure. No pneumothorax or pneumonia.",
"Right upper lobe opacity concerning for pneumonia. No pleural effusion or pneumothorax. Heart size is normal.",
"Left lower lobe atelectasis. No pneumothorax or pleural effusion. Heart size is normal.",
"Bilateral pleural effusions with bibasilar atelectasis. Cardiomegaly present. Findings consistent with heart failure.",
"Right pneumothorax with partial lung collapse. No pleural effusion. Heart size is normal.",
"Endotracheal tube, central venous catheter, and nasogastric tube in place. No pneumothorax or pleural effusion.",
"Hyperinflated lungs with flattened diaphragms, consistent with COPD. No acute infiltrate or effusion.",
"Multiple rib fractures on the right side. No pneumothorax or hemothorax. Lung fields are clear."
],
'valid_index': list(range(10))
})
# Create dummy FAISS indices
self.image_index = None # Will be created on first use
self.text_index = None # Will be created on first use
debug_print("Knowledge base initialized")
def _create_dummy_indices(self):
"""Create dummy FAISS indices for demonstration"""
# Text embeddings (768 dimensions for BERT-based models)
text_dim = 768
text_embeddings = np.random.rand(len(self.text_data), text_dim).astype('float32')
# Image embeddings (1024 dimensions for DenseNet121)
image_dim = 1024
image_embeddings = np.random.rand(len(self.text_data), image_dim).astype('float32')
# Create FAISS indices
self.text_index = faiss.IndexFlatL2(text_dim)
self.text_index.add(text_embeddings)
self.image_index = faiss.IndexFlatL2(image_dim)
self.image_index.add(image_embeddings)
debug_print("Dummy FAISS indices created")
def process_image(self, image_path):
"""Process an X-ray image and return analysis results"""
try:
debug_print(f"Processing image: {image_path}")
# Check cache
if Config.USE_CACHING:
cached_result = self.query_cache.get(f"img_{image_path}")
if cached_result:
debug_print("Using cached image result")
return cached_result
# Load and preprocess image
image = Image.open(image_path).convert('RGB')
image_tensor = self.image_transform(image).unsqueeze(0).to(self.device)
# Generate image embedding
with torch.no_grad():
image_embedding = self.image_model(image_tensor)
image_embedding = nn.functional.avg_pool2d(image_embedding, kernel_size=7).squeeze().cpu().numpy()
# Initialize FAISS indices if needed
if self.image_index is None:
self._create_dummy_indices()
# Retrieve similar cases
distances, indices = self.image_index.search(np.array([image_embedding]), k=Config.TOP_K_RETRIEVAL)
# Get relevant text data
retrieved_texts = [self.text_data.iloc[idx]['combined_text'] for idx in indices[0]]
# Generate context for the model
context = "\n\n".join(retrieved_texts[:Config.MAX_CONTEXT_DOCS])
# Generate analysis
prompt = f"Analyze this chest X-ray based on similar cases:\n\n{context}\n\nProvide a detailed radiological assessment including findings and impression:"
analysis = self._generate_text(prompt)
# Generate attention map (simplified for deployment)
attention_map = self._generate_attention_map(image)
# Prepare result
result = {
"analysis": analysis,
"attention_map": attention_map,
"confidence": 0.85, # Placeholder
"similar_cases": retrieved_texts[:3] # Return top 3 similar cases
}
# Cache result
if Config.USE_CACHING:
self.query_cache.put(f"img_{image_path}", result)
return result
except Exception as e:
error_msg = f"Error processing image: {str(e)}\n{traceback.format_exc()}"
debug_print(error_msg)
return {"error": error_msg}
def process_query(self, query_text):
"""Process a text query and return relevant information"""
try:
debug_print(f"Processing query: {query_text}")
# Check cache
if Config.USE_CACHING:
cached_result = self.query_cache.get(f"txt_{query_text}")
if cached_result:
debug_print("Using cached query result")
return cached_result
# Anonymize query
query_text = anonymize_text(query_text)
# Generate text embedding
query_embedding = self._generate_text_embedding(query_text)
# Initialize FAISS indices if needed
if self.text_index is None:
self._create_dummy_indices()
# Retrieve similar texts
distances, indices = self.text_index.search(np.array([query_embedding]), k=Config.TOP_K_RETRIEVAL)
# Get relevant text data
retrieved_texts = [self.text_data.iloc[idx]['combined_text'] for idx in indices[0]]
# Generate context for the model
context = "\n\n".join(retrieved_texts[:Config.MAX_CONTEXT_DOCS])
# Generate response
prompt = f"Answer this medical question based on the following information:\n\nQuestion: {query_text}\n\nRelevant information:\n{context}\n\nDetailed answer:"
response = self._generate_text(prompt)
# Prepare result
result = {
"response": response,
"confidence": 0.9, # Placeholder
"sources": retrieved_texts[:3] # Return top 3 sources
}
# Cache result
if Config.USE_CACHING:
self.query_cache.put(f"txt_{query_text}", result)
return result
except Exception as e:
error_msg = f"Error processing query: {str(e)}\n{traceback.format_exc()}"
debug_print(error_msg)
return {"error": error_msg}
def _generate_text_embedding(self, text):
"""Generate embedding for text using the text model"""
try:
# Check cache
if Config.USE_CACHING:
cached_embedding = self.embedding_cache.get(f"txt_emb_{text}")
if cached_embedding is not None:
return cached_embedding
# Tokenize
inputs = self.text_tokenizer(
text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
).to(self.device)
# Generate embedding
with torch.no_grad():
outputs = self.text_model(**inputs)
# Use mean pooling
embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()[0]
# Cache embedding
if Config.USE_CACHING:
self.embedding_cache.put(f"txt_emb_{text}", embedding)
return embedding
except Exception as e:
debug_print(f"Error generating text embedding: {str(e)}")
# Return random embedding as fallback
return np.random.rand(768).astype('float32')
def _generate_text(self, prompt):
"""Generate text using the language model"""
try:
# Tokenize
inputs = self.gen_tokenizer(
prompt,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512
).to(self.device)
# Generate
with torch.no_grad():
output_ids = self.gen_model.generate(
inputs.input_ids,
max_length=256,
num_beams=4,
early_stopping=True
)
# Decode
output_text = self.gen_tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text
except Exception as e:
debug_print(f"Error generating text: {str(e)}")
return "I apologize, but I'm unable to generate a response at this time. Please try again later."
def _generate_attention_map(self, image):
"""Generate a simplified attention map for the image"""
try:
# Convert to numpy array
img_np = np.array(image.resize((224, 224)))
# Create a simple heatmap (this is a placeholder - real implementation would use model attention)
heatmap = np.zeros((224, 224), dtype=np.float32)
# Add some random "attention" areas
for _ in range(3):
x, y = np.random.randint(50, 174, 2)
radius = np.random.randint(20, 50)
for i in range(224):
for j in range(224):
dist = np.sqrt((i - x)**2 + (j - y)**2)
if dist < radius:
heatmap[i, j] += max(0, 1 - dist/radius)
# Normalize
heatmap = heatmap / heatmap.max()
# Apply colormap
heatmap_colored = cv2.applyColorMap((heatmap * 255).astype(np.uint8), cv2.COLORMAP_JET)
# Overlay on original image
img_rgb = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
overlay = cv2.addWeighted(img_rgb, 0.7, heatmap_colored, 0.3, 0)
# Convert to base64 for API response
_, buffer = cv2.imencode('.png', overlay)
img_str = base64.b64encode(buffer).decode('utf-8')
return img_str
except Exception as e:
debug_print(f"Error generating attention map: {str(e)}")
return None
def cleanup(self):
"""Clean up resources"""
debug_print("Cleaning up resources...")
# Unload models
if hasattr(self, 'text_model') and isinstance(self.text_model, LazyModel):
self.text_model.unload()
if hasattr(self, 'gen_model') and isinstance(self.gen_model, LazyModel):
self.gen_model.unload()
# Clear caches
if hasattr(self, 'embedding_cache'):
self.embedding_cache.clear()
if hasattr(self, 'query_cache'):
self.query_cache.clear()
# Force garbage collection
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
debug_print("Cleanup complete")
# === FastAPI Application ===
app = FastAPI(title="MediQuery API", description="API for MediQuery AI medical assistant")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # For production, specify the actual frontend domain
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize MediQuery system
mediquery = MediQuery()
# Define API models
class QueryRequest(BaseModel):
text: str
class QueryResponse(BaseModel):
response: str
confidence: float
sources: List[str]
error: Optional[str] = None
class ImageAnalysisResponse(BaseModel):
analysis: str
attention_map: Optional[str] = None
confidence: float
similar_cases: List[str]
error: Optional[str] = None
@app.post("/api/query", response_model=QueryResponse)
async def process_text_query(query: QueryRequest):
"""Process a text query and return relevant information"""
result = mediquery.process_query(query.text)
return result
@app.post("/api/analyze-image", response_model=ImageAnalysisResponse)
async def analyze_image(file: UploadFile = File(...)):
"""Analyze an X-ray image and return results"""
# Save uploaded file temporarily
temp_file = f"/tmp/{file.filename}"
with open(temp_file, "wb") as f:
f.write(await file.read())
# Process image
result = mediquery.process_image(temp_file)
# Clean up
os.remove(temp_file)
return result
@app.get("/api/health")
async def health_check():
"""Health check endpoint"""
return {"status": "ok", "version": "1.0.0"}
# === Gradio Interface ===
def create_gradio_interface():
"""Create a Gradio interface for the MediQuery system"""
# Define processing functions
def process_image_gradio(image):
# Save image temporarily
temp_file = "/tmp/gradio_image.png"
image.save(temp_file)
# Process image
result = mediquery.process_image(temp_file)
# Clean up
os.remove(temp_file)
# Prepare output
analysis = result.get("analysis", "Error processing image")
attention_map_b64 = result.get("attention_map")
# Convert base64 to image if available
attention_map = None
if attention_map_b64:
try:
attention_map = Image.open(io.BytesIO(base64.b64decode(attention_map_b64)))
except:
pass
return analysis, attention_map
def process_query_gradio(query):
result = mediquery.process_query(query)
return result.get("response", "Error processing query")
# Create interface
with gr.Blocks(title="MediQuery") as demo:
gr.Markdown("# MediQuery - AI Medical Assistant")
with gr.Tab("Image Analysis"):
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Chest X-ray")
image_button = gr.Button("Analyze X-ray")
with gr.Column():
text_output = gr.Textbox(label="Analysis Results", lines=10)
image_output = gr.Image(label="Attention Map")
image_button.click(
fn=process_image_gradio,
inputs=[image_input],
outputs=[text_output, image_output]
)
with gr.Tab("Text Query"):
query_input = gr.Textbox(label="Medical Query", lines=3, placeholder="e.g., What does pneumonia look like on a chest X-ray?")
query_button = gr.Button("Submit Query")
query_output = gr.Textbox(label="Response", lines=10)
query_button.click(
fn=process_query_gradio,
inputs=[query_input],
outputs=[query_output]
)
gr.Markdown("## Example Queries")
gr.Examples(
examples=[
["What does pleural effusion look like?"],
["How to differentiate pneumonia from tuberculosis?"],
["What are the signs of cardiomegaly on X-ray?"]
],
inputs=[query_input]
)
return demo
# Create Gradio interface
demo = create_gradio_interface()
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
# Startup and shutdown events
@app.on_event("startup")
async def startup_event():
"""Initialize resources on startup"""
debug_print("API starting up...")
@app.on_event("shutdown")
async def shutdown_event():
"""Clean up resources on shutdown"""
debug_print("API shutting down...")
mediquery.cleanup()
# Run the FastAPI app with uvicorn when executed directly
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|