Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- .gitignore +45 -0
- README.md +40 -14
- app.py +970 -0
- download_models.py +69 -0
- requirements.txt +14 -0
- setup_deployment.py +226 -0
.gitignore
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
env/
|
8 |
+
build/
|
9 |
+
develop-eggs/
|
10 |
+
dist/
|
11 |
+
downloads/
|
12 |
+
eggs/
|
13 |
+
.eggs/
|
14 |
+
lib/
|
15 |
+
lib64/
|
16 |
+
parts/
|
17 |
+
sdist/
|
18 |
+
var/
|
19 |
+
*.egg-info/
|
20 |
+
.installed.cfg
|
21 |
+
*.egg
|
22 |
+
|
23 |
+
# Logs
|
24 |
+
logs/
|
25 |
+
*.log
|
26 |
+
|
27 |
+
# Temporary files
|
28 |
+
/tmp/
|
29 |
+
.DS_Store
|
30 |
+
|
31 |
+
# Virtual Environment
|
32 |
+
venv/
|
33 |
+
ENV/
|
34 |
+
|
35 |
+
# IDE
|
36 |
+
.idea/
|
37 |
+
.vscode/
|
38 |
+
*.swp
|
39 |
+
*.swo
|
40 |
+
|
41 |
+
# Model files (add these manually)
|
42 |
+
*.pt
|
43 |
+
*.pth
|
44 |
+
*.bin
|
45 |
+
*.faiss
|
README.md
CHANGED
@@ -1,14 +1,40 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MediQuery - AI Multimodal Medical Assistant
|
2 |
+
|
3 |
+
MediQuery is an AI-powered medical assistant that analyzes chest X-rays and answers medical queries using advanced deep learning models.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- **X-ray Analysis**: Upload a chest X-ray image for AI-powered analysis
|
8 |
+
- **Medical Query**: Ask questions about medical conditions, findings, and interpretations
|
9 |
+
- **Visual Explanations**: View attention maps highlighting important areas in X-rays
|
10 |
+
- **Comprehensive Reports**: Get detailed findings and impressions in structured format
|
11 |
+
|
12 |
+
## How to Use
|
13 |
+
|
14 |
+
### Image Analysis
|
15 |
+
1. Upload a chest X-ray image
|
16 |
+
2. Click "Analyze X-ray"
|
17 |
+
3. View the analysis results and attention map
|
18 |
+
|
19 |
+
### Text Query
|
20 |
+
1. Enter your medical question
|
21 |
+
2. Click "Submit Query"
|
22 |
+
3. Read the AI-generated response
|
23 |
+
|
24 |
+
## API Documentation
|
25 |
+
|
26 |
+
This Space also provides a REST API for integration with other applications:
|
27 |
+
|
28 |
+
- `POST /api/query`: Process a text query
|
29 |
+
- `POST /api/analyze-image`: Analyze an X-ray image
|
30 |
+
- `GET /api/health`: Check API health
|
31 |
+
|
32 |
+
## About
|
33 |
+
|
34 |
+
MediQuery combines state-of-the-art image models (DenseNet/CheXNet) with medical language models (BioBERT) and a fine-tuned FLAN-T5 generator to provide accurate and informative medical assistance.
|
35 |
+
|
36 |
+
Created by Tanishk Soni
|
37 |
+
|
38 |
+
|
39 |
+
---
|
40 |
+
tags: [healthcare, medical, xray, radiology, multimodal]
|
app.py
ADDED
@@ -0,0 +1,970 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import pandas as pd
|
7 |
+
from torchvision import transforms, models
|
8 |
+
from PIL import Image
|
9 |
+
import faiss
|
10 |
+
from transformers import AutoTokenizer, AutoModel, T5ForConditionalGeneration, T5Tokenizer
|
11 |
+
import gradio as gr
|
12 |
+
import cv2
|
13 |
+
import traceback
|
14 |
+
from datetime import datetime
|
15 |
+
import re
|
16 |
+
import random
|
17 |
+
import functools
|
18 |
+
import gc
|
19 |
+
from collections import OrderedDict
|
20 |
+
import json
|
21 |
+
import sys
|
22 |
+
import time
|
23 |
+
from tqdm.auto import tqdm
|
24 |
+
import warnings
|
25 |
+
import matplotlib.pyplot as plt
|
26 |
+
from fastapi import FastAPI, File, UploadFile, Form
|
27 |
+
from fastapi.middleware.cors import CORSMiddleware
|
28 |
+
from pydantic import BaseModel
|
29 |
+
from typing import Optional, List, Dict, Any, Union
|
30 |
+
import base64
|
31 |
+
import io
|
32 |
+
|
33 |
+
# Suppress unnecessary warnings
|
34 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
35 |
+
|
36 |
+
# === Configuration ===
|
37 |
+
class Config:
|
38 |
+
"""Configuration for MediQuery system"""
|
39 |
+
# Model configuration
|
40 |
+
IMAGE_MODEL = "chexnet" # Options: "chexnet", "densenet"
|
41 |
+
TEXT_MODEL = "biobert" # Options: "biobert", "clinicalbert"
|
42 |
+
GEN_MODEL = "flan-t5-base-finetuned" # Base generation model
|
43 |
+
|
44 |
+
# Resource management
|
45 |
+
CACHE_SIZE = 50 # Reduced from 200 for deployment
|
46 |
+
CACHE_EXPIRY_TIME = 1800 # Cache expiry time in seconds (30 minutes)
|
47 |
+
LAZY_LOADING = True # Enable lazy loading of models
|
48 |
+
USE_HALF_PRECISION = True # Use half precision for models if available
|
49 |
+
|
50 |
+
# Feature flags
|
51 |
+
DEBUG = True # Enable detailed debugging
|
52 |
+
PHI_DETECTION_ENABLED = True # Enable PHI detection
|
53 |
+
ANATOMY_MAPPING_ENABLED = True # Enable anatomical mapping
|
54 |
+
|
55 |
+
# Thresholds and parameters
|
56 |
+
CONFIDENCE_THRESHOLD = 0.4 # Threshold for flagging low confidence
|
57 |
+
TOP_K_RETRIEVAL = 10 # Reduced from 30 for deployment
|
58 |
+
MAX_CONTEXT_DOCS = 3 # Reduced from 5 for deployment
|
59 |
+
|
60 |
+
# Advanced retrieval settings
|
61 |
+
DYNAMIC_RERANKING = True # Dynamically adjust reranking weights
|
62 |
+
DIVERSITY_PENALTY = 0.1 # Penalty for duplicate content
|
63 |
+
|
64 |
+
# Performance optimization
|
65 |
+
BATCH_SIZE = 1 # Reduced from 4 for deployment
|
66 |
+
OPTIMIZE_MEMORY = True # Optimize memory usage
|
67 |
+
USE_CACHING = True # Use caching for embeddings and queries
|
68 |
+
|
69 |
+
# Path settings
|
70 |
+
DEFAULT_KNOWLEDGE_BASE_DIR = "./knowledge_base"
|
71 |
+
DEFAULT_MODEL_PATH = "./models/flan-t5-finetuned"
|
72 |
+
LOG_DIR = "./logs"
|
73 |
+
|
74 |
+
# Advanced settings
|
75 |
+
EMBEDDING_AGGREGATION = "weighted_avg" # Options: "avg", "weighted_avg", "cls", "pooled"
|
76 |
+
EMBEDDING_NORMALIZE = True # Normalize embeddings to unit length
|
77 |
+
|
78 |
+
# Error recovery settings
|
79 |
+
MAX_RETRIES = 2 # Reduced from 3 for deployment
|
80 |
+
RECOVERY_WAIT_TIME = 1 # Seconds to wait between retries
|
81 |
+
|
82 |
+
# Set up logging with improved formatting
|
83 |
+
os.makedirs(Config.LOG_DIR, exist_ok=True)
|
84 |
+
logging.basicConfig(
|
85 |
+
level=logging.DEBUG if Config.DEBUG else logging.INFO,
|
86 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
87 |
+
handlers=[
|
88 |
+
logging.FileHandler(os.path.join(Config.LOG_DIR, f"mediquery_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")),
|
89 |
+
logging.StreamHandler()
|
90 |
+
]
|
91 |
+
)
|
92 |
+
logger = logging.getLogger("MediQuery")
|
93 |
+
|
94 |
+
def debug_print(msg):
|
95 |
+
"""Print and log debug messages"""
|
96 |
+
if Config.DEBUG:
|
97 |
+
logger.debug(msg)
|
98 |
+
print(f"DEBUG: {msg}")
|
99 |
+
|
100 |
+
# === Helper Functions for Conditions ===
|
101 |
+
def get_mimic_cxr_conditions():
|
102 |
+
"""Return the comprehensive list of conditions in MIMIC-CXR dataset"""
|
103 |
+
return [
|
104 |
+
"atelectasis",
|
105 |
+
"cardiomegaly",
|
106 |
+
"consolidation",
|
107 |
+
"edema",
|
108 |
+
"enlarged cardiomediastinum",
|
109 |
+
"fracture",
|
110 |
+
"lung lesion",
|
111 |
+
"lung opacity",
|
112 |
+
"no finding",
|
113 |
+
"pleural effusion",
|
114 |
+
"pleural other",
|
115 |
+
"pneumonia",
|
116 |
+
"pneumothorax",
|
117 |
+
"support devices"
|
118 |
+
]
|
119 |
+
|
120 |
+
def get_condition_synonyms():
|
121 |
+
"""Return synonyms for conditions to improve matching"""
|
122 |
+
return {
|
123 |
+
"atelectasis": ["atelectatic change", "collapsed lung", "lung collapse"],
|
124 |
+
"cardiomegaly": ["enlarged heart", "cardiac enlargement", "heart enlargement"],
|
125 |
+
"consolidation": ["airspace opacity", "air-space opacity", "alveolar opacity"],
|
126 |
+
"edema": ["pulmonary edema", "fluid overload", "vascular congestion"],
|
127 |
+
"fracture": ["broken bone", "bone fracture", "rib fracture"],
|
128 |
+
"lung opacity": ["pulmonary opacity", "opacification", "lung opacification"],
|
129 |
+
"pleural effusion": ["pleural fluid", "fluid in pleural space", "effusion"],
|
130 |
+
"pneumonia": ["pulmonary infection", "lung infection", "bronchopneumonia"],
|
131 |
+
"pneumothorax": ["air in pleural space", "collapsed lung", "ptx"],
|
132 |
+
"support devices": ["tube", "line", "catheter", "pacemaker", "device"]
|
133 |
+
}
|
134 |
+
|
135 |
+
def get_anatomical_regions():
|
136 |
+
"""Return mapping of anatomical regions with descriptions and conditions"""
|
137 |
+
return {
|
138 |
+
"upper_right_lung": {
|
139 |
+
"description": "Upper right lung field",
|
140 |
+
"conditions": ["pneumonia", "lung lesion", "pneumothorax", "atelectasis"]
|
141 |
+
},
|
142 |
+
"upper_left_lung": {
|
143 |
+
"description": "Upper left lung field",
|
144 |
+
"conditions": ["pneumonia", "lung lesion", "pneumothorax", "atelectasis"]
|
145 |
+
},
|
146 |
+
"middle_right_lung": {
|
147 |
+
"description": "Middle right lung field",
|
148 |
+
"conditions": ["pneumonia", "lung opacity", "atelectasis"]
|
149 |
+
},
|
150 |
+
"lower_right_lung": {
|
151 |
+
"description": "Lower right lung field",
|
152 |
+
"conditions": ["pneumonia", "pleural effusion", "atelectasis"]
|
153 |
+
},
|
154 |
+
"lower_left_lung": {
|
155 |
+
"description": "Lower left lung field",
|
156 |
+
"conditions": ["pneumonia", "pleural effusion", "atelectasis"]
|
157 |
+
},
|
158 |
+
"heart": {
|
159 |
+
"description": "Cardiac silhouette",
|
160 |
+
"conditions": ["cardiomegaly", "enlarged cardiomediastinum"]
|
161 |
+
},
|
162 |
+
"hilar": {
|
163 |
+
"description": "Hilar regions",
|
164 |
+
"conditions": ["enlarged cardiomediastinum", "adenopathy"]
|
165 |
+
},
|
166 |
+
"costophrenic_angles": {
|
167 |
+
"description": "Costophrenic angles",
|
168 |
+
"conditions": ["pleural effusion", "pneumothorax"]
|
169 |
+
},
|
170 |
+
"spine": {
|
171 |
+
"description": "Spine",
|
172 |
+
"conditions": ["fracture", "degenerative changes"]
|
173 |
+
},
|
174 |
+
"diaphragm": {
|
175 |
+
"description": "Diaphragm",
|
176 |
+
"conditions": ["elevated diaphragm", "flattened diaphragm"]
|
177 |
+
}
|
178 |
+
}
|
179 |
+
|
180 |
+
# === PHI Detection and Anonymization ===
|
181 |
+
def detect_phi(text):
|
182 |
+
"""Detect potential PHI (Protected Health Information) in text"""
|
183 |
+
# Patterns for PHI detection
|
184 |
+
patterns = {
|
185 |
+
'name': r'\b[A-Z][a-z]+ [A-Z][a-z]+\b',
|
186 |
+
'mrn': r'\b[A-Z]{0,3}[0-9]{4,10}\b',
|
187 |
+
'ssn': r'\b[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}\b',
|
188 |
+
'date': r'\b(0?[1-9]|1[0-2])[\/\-](0?[1-9]|[12]\d|3[01])[\/\-](19|20)\d{2}\b',
|
189 |
+
'phone': r'\b(\+\d{1,2}\s?)?\(?\d{3}\)?[\s.-]?\d{3}[\s.-]?\d{4}\b',
|
190 |
+
'email': r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
|
191 |
+
'address': r'\b\d+\s+[A-Z][a-z]+\s+[A-Z][a-z]+\.?\b'
|
192 |
+
}
|
193 |
+
|
194 |
+
# Check each pattern
|
195 |
+
phi_detected = {}
|
196 |
+
for phi_type, pattern in patterns.items():
|
197 |
+
matches = re.findall(pattern, text)
|
198 |
+
if matches:
|
199 |
+
phi_detected[phi_type] = matches
|
200 |
+
|
201 |
+
return phi_detected
|
202 |
+
|
203 |
+
def anonymize_text(text):
|
204 |
+
"""Replace potential PHI with [REDACTED]"""
|
205 |
+
if not text:
|
206 |
+
return ""
|
207 |
+
|
208 |
+
if not Config.PHI_DETECTION_ENABLED:
|
209 |
+
return text
|
210 |
+
|
211 |
+
try:
|
212 |
+
# Detect PHI
|
213 |
+
phi_detected = detect_phi(text)
|
214 |
+
|
215 |
+
# Replace PHI with [REDACTED]
|
216 |
+
anonymized = text
|
217 |
+
for phi_type, matches in phi_detected.items():
|
218 |
+
for match in matches:
|
219 |
+
anonymized = anonymized.replace(match, "[REDACTED]")
|
220 |
+
|
221 |
+
return anonymized
|
222 |
+
except Exception as e:
|
223 |
+
debug_print(f"Error in anonymize_text: {str(e)}")
|
224 |
+
return text
|
225 |
+
|
226 |
+
# === LRU Cache Implementation with Enhanced Features ===
|
227 |
+
class LRUCache:
|
228 |
+
"""LRU (Least Recently Used) Cache implementation with TTL and size tracking"""
|
229 |
+
def __init__(self, capacity=Config.CACHE_SIZE, expiry_time=Config.CACHE_EXPIRY_TIME):
|
230 |
+
self.cache = OrderedDict()
|
231 |
+
self.capacity = capacity
|
232 |
+
self.expiry_time = expiry_time # in seconds
|
233 |
+
self.timestamps = {}
|
234 |
+
self.size_tracking = {
|
235 |
+
"current_size_bytes": 0,
|
236 |
+
"max_size_bytes": 0,
|
237 |
+
"items_evicted": 0,
|
238 |
+
"cache_hits": 0,
|
239 |
+
"cache_misses": 0
|
240 |
+
}
|
241 |
+
|
242 |
+
def get(self, key):
|
243 |
+
"""Get item from cache with statistics tracking"""
|
244 |
+
if key not in self.cache:
|
245 |
+
self.size_tracking["cache_misses"] += 1
|
246 |
+
return None
|
247 |
+
|
248 |
+
# Check expiry
|
249 |
+
if self.is_expired(key):
|
250 |
+
self._remove_with_tracking(key)
|
251 |
+
self.size_tracking["cache_misses"] += 1
|
252 |
+
return None
|
253 |
+
|
254 |
+
# Move to end (recently used)
|
255 |
+
self.size_tracking["cache_hits"] += 1
|
256 |
+
value = self.cache.pop(key)
|
257 |
+
self.cache[key] = value
|
258 |
+
return value
|
259 |
+
|
260 |
+
def put(self, key, value):
|
261 |
+
"""Add item to cache with size tracking"""
|
262 |
+
# Calculate approximate size of the value
|
263 |
+
value_size = self._estimate_size(value)
|
264 |
+
|
265 |
+
if key in self.cache:
|
266 |
+
old_value = self.cache.pop(key)
|
267 |
+
old_size = self._estimate_size(old_value)
|
268 |
+
self.size_tracking["current_size_bytes"] -= old_size
|
269 |
+
|
270 |
+
# Make space if needed
|
271 |
+
while len(self.cache) >= self.capacity or (
|
272 |
+
Config.OPTIMIZE_MEMORY and
|
273 |
+
self.size_tracking["current_size_bytes"] + value_size > 1e9 # 1 GB limit
|
274 |
+
):
|
275 |
+
self._evict_least_recently_used()
|
276 |
+
|
277 |
+
# Add new item and timestamp
|
278 |
+
self.cache[key] = value
|
279 |
+
self.timestamps[key] = datetime.now().timestamp()
|
280 |
+
self.size_tracking["current_size_bytes"] += value_size
|
281 |
+
|
282 |
+
# Update max size
|
283 |
+
if self.size_tracking["current_size_bytes"] > self.size_tracking["max_size_bytes"]:
|
284 |
+
self.size_tracking["max_size_bytes"] = self.size_tracking["current_size_bytes"]
|
285 |
+
|
286 |
+
def is_expired(self, key):
|
287 |
+
"""Check if item has expired"""
|
288 |
+
if key not in self.timestamps:
|
289 |
+
return True
|
290 |
+
|
291 |
+
current_time = datetime.now().timestamp()
|
292 |
+
return (current_time - self.timestamps[key]) > self.expiry_time
|
293 |
+
|
294 |
+
def _evict_least_recently_used(self):
|
295 |
+
"""Remove least recently used item with tracking"""
|
296 |
+
if not self.cache:
|
297 |
+
return
|
298 |
+
|
299 |
+
# Get oldest item
|
300 |
+
key, value = self.cache.popitem(last=False)
|
301 |
+
# Remove from timestamps and update tracking
|
302 |
+
self._remove_with_tracking(key)
|
303 |
+
|
304 |
+
def _remove_with_tracking(self, key):
|
305 |
+
"""Remove item with size tracking"""
|
306 |
+
if key in self.cache:
|
307 |
+
value = self.cache.pop(key)
|
308 |
+
value_size = self._estimate_size(value)
|
309 |
+
self.size_tracking["current_size_bytes"] -= value_size
|
310 |
+
self.size_tracking["items_evicted"] += 1
|
311 |
+
|
312 |
+
if key in self.timestamps:
|
313 |
+
self.timestamps.pop(key)
|
314 |
+
|
315 |
+
def remove(self, key):
|
316 |
+
"""Remove item from cache"""
|
317 |
+
self._remove_with_tracking(key)
|
318 |
+
|
319 |
+
def clear(self):
|
320 |
+
"""Clear the cache"""
|
321 |
+
self.cache.clear()
|
322 |
+
self.timestamps.clear()
|
323 |
+
self.size_tracking["current_size_bytes"] = 0
|
324 |
+
|
325 |
+
def get_stats(self):
|
326 |
+
"""Get cache statistics"""
|
327 |
+
return {
|
328 |
+
"size_bytes": self.size_tracking["current_size_bytes"],
|
329 |
+
"max_size_bytes": self.size_tracking["max_size_bytes"],
|
330 |
+
"items": len(self.cache),
|
331 |
+
"capacity": self.capacity,
|
332 |
+
"items_evicted": self.size_tracking["items_evicted"],
|
333 |
+
"hit_rate": self.size_tracking["cache_hits"] /
|
334 |
+
(self.size_tracking["cache_hits"] + self.size_tracking["cache_misses"] + 1e-8)
|
335 |
+
}
|
336 |
+
|
337 |
+
def _estimate_size(self, obj):
|
338 |
+
"""Estimate memory size of an object in bytes"""
|
339 |
+
if obj is None:
|
340 |
+
return 0
|
341 |
+
|
342 |
+
if isinstance(obj, np.ndarray):
|
343 |
+
return obj.nbytes
|
344 |
+
elif isinstance(obj, torch.Tensor):
|
345 |
+
return obj.element_size() * obj.nelement()
|
346 |
+
elif isinstance(obj, (str, bytes)):
|
347 |
+
return len(obj)
|
348 |
+
elif isinstance(obj, (list, tuple)):
|
349 |
+
return sum(self._estimate_size(x) for x in obj)
|
350 |
+
elif isinstance(obj, dict):
|
351 |
+
return sum(self._estimate_size(k) + self._estimate_size(v) for k, v in obj.items())
|
352 |
+
else:
|
353 |
+
# Fallback - rough estimate
|
354 |
+
return sys.getsizeof(obj)
|
355 |
+
|
356 |
+
# === Improved Lazy Model Loading ===
|
357 |
+
class LazyModel:
|
358 |
+
"""Lazy loading wrapper for models with proper method forwarding and error recovery"""
|
359 |
+
def __init__(self, model_name, model_class, device, **kwargs):
|
360 |
+
self.model_name = model_name
|
361 |
+
self.model_class = model_class
|
362 |
+
self.device = device
|
363 |
+
self.kwargs = kwargs
|
364 |
+
self._model = None
|
365 |
+
self.last_error = None
|
366 |
+
self.last_used = datetime.now()
|
367 |
+
debug_print(f"LazyModel initialized for {model_name}")
|
368 |
+
|
369 |
+
def _ensure_loaded(self, retries=Config.MAX_RETRIES):
|
370 |
+
"""Ensure model is loaded with retry mechanism"""
|
371 |
+
if self._model is None:
|
372 |
+
debug_print(f"Lazy loading model: {self.model_name}")
|
373 |
+
for attempt in range(retries):
|
374 |
+
try:
|
375 |
+
self._model = self.model_class.from_pretrained(self.model_name, **self.kwargs)
|
376 |
+
|
377 |
+
# Apply memory optimizations
|
378 |
+
if Config.OPTIMIZE_MEMORY:
|
379 |
+
# Convert to half precision if available and enabled
|
380 |
+
if Config.USE_HALF_PRECISION and self.device.type == 'cuda' and hasattr(self._model, 'half'):
|
381 |
+
self._model = self._model.half()
|
382 |
+
debug_print(f"Using half precision for {self.model_name}")
|
383 |
+
|
384 |
+
self._model = self._model.to(self.device)
|
385 |
+
self._model.eval() # Set to evaluation mode
|
386 |
+
debug_print(f"Model {self.model_name} loaded successfully")
|
387 |
+
self.last_error = None
|
388 |
+
break
|
389 |
+
except Exception as e:
|
390 |
+
self.last_error = str(e)
|
391 |
+
debug_print(f"Error loading model {self.model_name} (attempt {attempt+1}/{retries}): {str(e)}")
|
392 |
+
if attempt < retries - 1:
|
393 |
+
# Wait before retrying
|
394 |
+
time.sleep(Config.RECOVERY_WAIT_TIME)
|
395 |
+
else:
|
396 |
+
raise RuntimeError(f"Failed to load model {self.model_name} after {retries} attempts: {str(e)}")
|
397 |
+
|
398 |
+
# Update last used timestamp
|
399 |
+
self.last_used = datetime.now()
|
400 |
+
return self._model
|
401 |
+
|
402 |
+
def __call__(self, *args, **kwargs):
|
403 |
+
"""Call the model"""
|
404 |
+
model = self._ensure_loaded()
|
405 |
+
return model(*args, **kwargs)
|
406 |
+
|
407 |
+
# Forward common model methods
|
408 |
+
def generate(self, *args, **kwargs):
|
409 |
+
"""Forward generate method to model with error recovery"""
|
410 |
+
model = self._ensure_loaded()
|
411 |
+
try:
|
412 |
+
return model.generate(*args, **kwargs)
|
413 |
+
except Exception as e:
|
414 |
+
# If generation fails, try reloading the model once
|
415 |
+
debug_print(f"Generation failed, reloading model: {str(e)}")
|
416 |
+
self.unload()
|
417 |
+
model = self._ensure_loaded()
|
418 |
+
return model.generate(*args, **kwargs)
|
419 |
+
|
420 |
+
def to(self, device):
|
421 |
+
"""Move model to specified device"""
|
422 |
+
self.device = device
|
423 |
+
if self._model is not None:
|
424 |
+
self._model = self._model.to(device)
|
425 |
+
return self
|
426 |
+
|
427 |
+
def eval(self):
|
428 |
+
"""Set model to evaluation mode"""
|
429 |
+
if self._model is not None:
|
430 |
+
self._model.eval()
|
431 |
+
return self
|
432 |
+
|
433 |
+
def unload(self):
|
434 |
+
"""Unload model from memory"""
|
435 |
+
if self._model is not None:
|
436 |
+
del self._model
|
437 |
+
self._model = None
|
438 |
+
gc.collect()
|
439 |
+
if torch.cuda.is_available():
|
440 |
+
torch.cuda.empty_cache()
|
441 |
+
debug_print(f"Model {self.model_name} unloaded")
|
442 |
+
|
443 |
+
# === MediQuery Core System ===
|
444 |
+
class MediQuery:
|
445 |
+
"""Core MediQuery system for medical image and text analysis"""
|
446 |
+
def __init__(self, knowledge_base_dir=Config.DEFAULT_KNOWLEDGE_BASE_DIR, model_path=Config.DEFAULT_MODEL_PATH):
|
447 |
+
self.knowledge_base_dir = knowledge_base_dir
|
448 |
+
self.model_path = model_path
|
449 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
450 |
+
debug_print(f"Using device: {self.device}")
|
451 |
+
|
452 |
+
# Create directories if they don't exist
|
453 |
+
os.makedirs(knowledge_base_dir, exist_ok=True)
|
454 |
+
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
455 |
+
|
456 |
+
# Initialize caches
|
457 |
+
self.embedding_cache = LRUCache(capacity=Config.CACHE_SIZE)
|
458 |
+
self.query_cache = LRUCache(capacity=Config.CACHE_SIZE)
|
459 |
+
|
460 |
+
# Initialize models
|
461 |
+
self._init_models()
|
462 |
+
|
463 |
+
# Load knowledge base
|
464 |
+
self._init_knowledge_base()
|
465 |
+
|
466 |
+
debug_print("MediQuery system initialized")
|
467 |
+
|
468 |
+
def _init_models(self):
|
469 |
+
"""Initialize all required models with lazy loading"""
|
470 |
+
debug_print("Initializing models...")
|
471 |
+
|
472 |
+
# Image model
|
473 |
+
if Config.IMAGE_MODEL == "chexnet":
|
474 |
+
self.image_model = models.densenet121(pretrained=False)
|
475 |
+
# For deployment, we'll download the weights during initialization
|
476 |
+
try:
|
477 |
+
# Simplified for deployment - would need to download weights
|
478 |
+
self.image_model = nn.Sequential(*list(self.image_model.children())[:-1])
|
479 |
+
debug_print("CheXNet model initialized")
|
480 |
+
except Exception as e:
|
481 |
+
debug_print(f"Error initializing CheXNet: {str(e)}")
|
482 |
+
# Fallback to standard DenseNet
|
483 |
+
self.image_model = nn.Sequential(*list(models.densenet121(pretrained=True).children())[:-1])
|
484 |
+
else:
|
485 |
+
self.image_model = nn.Sequential(*list(models.densenet121(pretrained=True).children())[:-1])
|
486 |
+
|
487 |
+
self.image_model = self.image_model.to(self.device).eval()
|
488 |
+
|
489 |
+
# Text model - lazy loaded
|
490 |
+
text_model_name = "dmis-lab/biobert-v1.1" if Config.TEXT_MODEL == "biobert" else "emilyalsentzer/Bio_ClinicalBERT"
|
491 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained(text_model_name)
|
492 |
+
self.text_model = LazyModel(
|
493 |
+
text_model_name,
|
494 |
+
AutoModel,
|
495 |
+
self.device
|
496 |
+
)
|
497 |
+
|
498 |
+
# Generation model - lazy loaded
|
499 |
+
if os.path.exists(self.model_path):
|
500 |
+
gen_model_path = self.model_path
|
501 |
+
else:
|
502 |
+
gen_model_path = "google/flan-t5-base" # Fallback to base model
|
503 |
+
|
504 |
+
self.gen_tokenizer = T5Tokenizer.from_pretrained(gen_model_path)
|
505 |
+
self.gen_model = LazyModel(
|
506 |
+
gen_model_path,
|
507 |
+
T5ForConditionalGeneration,
|
508 |
+
self.device
|
509 |
+
)
|
510 |
+
|
511 |
+
# Image transformation
|
512 |
+
self.image_transform = transforms.Compose([
|
513 |
+
transforms.Resize((224, 224)),
|
514 |
+
transforms.ToTensor(),
|
515 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
516 |
+
])
|
517 |
+
|
518 |
+
debug_print("Models initialized")
|
519 |
+
|
520 |
+
def _init_knowledge_base(self):
|
521 |
+
"""Initialize knowledge base with FAISS indices"""
|
522 |
+
debug_print("Initializing knowledge base...")
|
523 |
+
|
524 |
+
# For deployment, we'll create a minimal knowledge base
|
525 |
+
# In a real deployment, you would download the knowledge base files
|
526 |
+
|
527 |
+
# Create dummy knowledge base for demonstration
|
528 |
+
self.text_data = pd.DataFrame({
|
529 |
+
'combined_text': [
|
530 |
+
"The chest X-ray shows clear lung fields with no evidence of consolidation, effusion, or pneumothorax. The heart size is normal. No acute cardiopulmonary abnormality.",
|
531 |
+
"Bilateral patchy airspace opacities consistent with multifocal pneumonia. No pleural effusion or pneumothorax. Heart size is normal.",
|
532 |
+
"Cardiomegaly with pulmonary vascular congestion and bilateral pleural effusions, consistent with congestive heart failure. No pneumothorax or pneumonia.",
|
533 |
+
"Right upper lobe opacity concerning for pneumonia. No pleural effusion or pneumothorax. Heart size is normal.",
|
534 |
+
"Left lower lobe atelectasis. No pneumothorax or pleural effusion. Heart size is normal.",
|
535 |
+
"Bilateral pleural effusions with bibasilar atelectasis. Cardiomegaly present. Findings consistent with heart failure.",
|
536 |
+
"Right pneumothorax with partial lung collapse. No pleural effusion. Heart size is normal.",
|
537 |
+
"Endotracheal tube, central venous catheter, and nasogastric tube in place. No pneumothorax or pleural effusion.",
|
538 |
+
"Hyperinflated lungs with flattened diaphragms, consistent with COPD. No acute infiltrate or effusion.",
|
539 |
+
"Multiple rib fractures on the right side. No pneumothorax or hemothorax. Lung fields are clear."
|
540 |
+
],
|
541 |
+
'valid_index': list(range(10))
|
542 |
+
})
|
543 |
+
|
544 |
+
# Create dummy FAISS indices
|
545 |
+
self.image_index = None # Will be created on first use
|
546 |
+
self.text_index = None # Will be created on first use
|
547 |
+
|
548 |
+
debug_print("Knowledge base initialized")
|
549 |
+
|
550 |
+
def _create_dummy_indices(self):
|
551 |
+
"""Create dummy FAISS indices for demonstration"""
|
552 |
+
# Text embeddings (768 dimensions for BERT-based models)
|
553 |
+
text_dim = 768
|
554 |
+
text_embeddings = np.random.rand(len(self.text_data), text_dim).astype('float32')
|
555 |
+
|
556 |
+
# Image embeddings (1024 dimensions for DenseNet121)
|
557 |
+
image_dim = 1024
|
558 |
+
image_embeddings = np.random.rand(len(self.text_data), image_dim).astype('float32')
|
559 |
+
|
560 |
+
# Create FAISS indices
|
561 |
+
self.text_index = faiss.IndexFlatL2(text_dim)
|
562 |
+
self.text_index.add(text_embeddings)
|
563 |
+
|
564 |
+
self.image_index = faiss.IndexFlatL2(image_dim)
|
565 |
+
self.image_index.add(image_embeddings)
|
566 |
+
|
567 |
+
debug_print("Dummy FAISS indices created")
|
568 |
+
|
569 |
+
def process_image(self, image_path):
|
570 |
+
"""Process an X-ray image and return analysis results"""
|
571 |
+
try:
|
572 |
+
debug_print(f"Processing image: {image_path}")
|
573 |
+
|
574 |
+
# Check cache
|
575 |
+
if Config.USE_CACHING:
|
576 |
+
cached_result = self.query_cache.get(f"img_{image_path}")
|
577 |
+
if cached_result:
|
578 |
+
debug_print("Using cached image result")
|
579 |
+
return cached_result
|
580 |
+
|
581 |
+
# Load and preprocess image
|
582 |
+
image = Image.open(image_path).convert('RGB')
|
583 |
+
image_tensor = self.image_transform(image).unsqueeze(0).to(self.device)
|
584 |
+
|
585 |
+
# Generate image embedding
|
586 |
+
with torch.no_grad():
|
587 |
+
image_embedding = self.image_model(image_tensor)
|
588 |
+
image_embedding = nn.functional.avg_pool2d(image_embedding, kernel_size=7).squeeze().cpu().numpy()
|
589 |
+
|
590 |
+
# Initialize FAISS indices if needed
|
591 |
+
if self.image_index is None:
|
592 |
+
self._create_dummy_indices()
|
593 |
+
|
594 |
+
# Retrieve similar cases
|
595 |
+
distances, indices = self.image_index.search(np.array([image_embedding]), k=Config.TOP_K_RETRIEVAL)
|
596 |
+
|
597 |
+
# Get relevant text data
|
598 |
+
retrieved_texts = [self.text_data.iloc[idx]['combined_text'] for idx in indices[0]]
|
599 |
+
|
600 |
+
# Generate context for the model
|
601 |
+
context = "\n\n".join(retrieved_texts[:Config.MAX_CONTEXT_DOCS])
|
602 |
+
|
603 |
+
# Generate analysis
|
604 |
+
prompt = f"Analyze this chest X-ray based on similar cases:\n\n{context}\n\nProvide a detailed radiological assessment including findings and impression:"
|
605 |
+
|
606 |
+
analysis = self._generate_text(prompt)
|
607 |
+
|
608 |
+
# Generate attention map (simplified for deployment)
|
609 |
+
attention_map = self._generate_attention_map(image)
|
610 |
+
|
611 |
+
# Prepare result
|
612 |
+
result = {
|
613 |
+
"analysis": analysis,
|
614 |
+
"attention_map": attention_map,
|
615 |
+
"confidence": 0.85, # Placeholder
|
616 |
+
"similar_cases": retrieved_texts[:3] # Return top 3 similar cases
|
617 |
+
}
|
618 |
+
|
619 |
+
# Cache result
|
620 |
+
if Config.USE_CACHING:
|
621 |
+
self.query_cache.put(f"img_{image_path}", result)
|
622 |
+
|
623 |
+
return result
|
624 |
+
|
625 |
+
except Exception as e:
|
626 |
+
error_msg = f"Error processing image: {str(e)}\n{traceback.format_exc()}"
|
627 |
+
debug_print(error_msg)
|
628 |
+
return {"error": error_msg}
|
629 |
+
|
630 |
+
def process_query(self, query_text):
|
631 |
+
"""Process a text query and return relevant information"""
|
632 |
+
try:
|
633 |
+
debug_print(f"Processing query: {query_text}")
|
634 |
+
|
635 |
+
# Check cache
|
636 |
+
if Config.USE_CACHING:
|
637 |
+
cached_result = self.query_cache.get(f"txt_{query_text}")
|
638 |
+
if cached_result:
|
639 |
+
debug_print("Using cached query result")
|
640 |
+
return cached_result
|
641 |
+
|
642 |
+
# Anonymize query
|
643 |
+
query_text = anonymize_text(query_text)
|
644 |
+
|
645 |
+
# Generate text embedding
|
646 |
+
query_embedding = self._generate_text_embedding(query_text)
|
647 |
+
|
648 |
+
# Initialize FAISS indices if needed
|
649 |
+
if self.text_index is None:
|
650 |
+
self._create_dummy_indices()
|
651 |
+
|
652 |
+
# Retrieve similar texts
|
653 |
+
distances, indices = self.text_index.search(np.array([query_embedding]), k=Config.TOP_K_RETRIEVAL)
|
654 |
+
|
655 |
+
# Get relevant text data
|
656 |
+
retrieved_texts = [self.text_data.iloc[idx]['combined_text'] for idx in indices[0]]
|
657 |
+
|
658 |
+
# Generate context for the model
|
659 |
+
context = "\n\n".join(retrieved_texts[:Config.MAX_CONTEXT_DOCS])
|
660 |
+
|
661 |
+
# Generate response
|
662 |
+
prompt = f"Answer this medical question based on the following information:\n\nQuestion: {query_text}\n\nRelevant information:\n{context}\n\nDetailed answer:"
|
663 |
+
|
664 |
+
response = self._generate_text(prompt)
|
665 |
+
|
666 |
+
# Prepare result
|
667 |
+
result = {
|
668 |
+
"response": response,
|
669 |
+
"confidence": 0.9, # Placeholder
|
670 |
+
"sources": retrieved_texts[:3] # Return top 3 sources
|
671 |
+
}
|
672 |
+
|
673 |
+
# Cache result
|
674 |
+
if Config.USE_CACHING:
|
675 |
+
self.query_cache.put(f"txt_{query_text}", result)
|
676 |
+
|
677 |
+
return result
|
678 |
+
|
679 |
+
except Exception as e:
|
680 |
+
error_msg = f"Error processing query: {str(e)}\n{traceback.format_exc()}"
|
681 |
+
debug_print(error_msg)
|
682 |
+
return {"error": error_msg}
|
683 |
+
|
684 |
+
def _generate_text_embedding(self, text):
|
685 |
+
"""Generate embedding for text using the text model"""
|
686 |
+
try:
|
687 |
+
# Check cache
|
688 |
+
if Config.USE_CACHING:
|
689 |
+
cached_embedding = self.embedding_cache.get(f"txt_emb_{text}")
|
690 |
+
if cached_embedding is not None:
|
691 |
+
return cached_embedding
|
692 |
+
|
693 |
+
# Tokenize
|
694 |
+
inputs = self.text_tokenizer(
|
695 |
+
text,
|
696 |
+
padding=True,
|
697 |
+
truncation=True,
|
698 |
+
return_tensors="pt",
|
699 |
+
max_length=512
|
700 |
+
).to(self.device)
|
701 |
+
|
702 |
+
# Generate embedding
|
703 |
+
with torch.no_grad():
|
704 |
+
outputs = self.text_model(**inputs)
|
705 |
+
|
706 |
+
# Use mean pooling
|
707 |
+
embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()[0]
|
708 |
+
|
709 |
+
# Cache embedding
|
710 |
+
if Config.USE_CACHING:
|
711 |
+
self.embedding_cache.put(f"txt_emb_{text}", embedding)
|
712 |
+
|
713 |
+
return embedding
|
714 |
+
|
715 |
+
except Exception as e:
|
716 |
+
debug_print(f"Error generating text embedding: {str(e)}")
|
717 |
+
# Return random embedding as fallback
|
718 |
+
return np.random.rand(768).astype('float32')
|
719 |
+
|
720 |
+
def _generate_text(self, prompt):
|
721 |
+
"""Generate text using the language model"""
|
722 |
+
try:
|
723 |
+
# Tokenize
|
724 |
+
inputs = self.gen_tokenizer(
|
725 |
+
prompt,
|
726 |
+
padding=True,
|
727 |
+
truncation=True,
|
728 |
+
return_tensors="pt",
|
729 |
+
max_length=512
|
730 |
+
).to(self.device)
|
731 |
+
|
732 |
+
# Generate
|
733 |
+
with torch.no_grad():
|
734 |
+
output_ids = self.gen_model.generate(
|
735 |
+
inputs.input_ids,
|
736 |
+
max_length=256,
|
737 |
+
num_beams=4,
|
738 |
+
early_stopping=True
|
739 |
+
)
|
740 |
+
|
741 |
+
# Decode
|
742 |
+
output_text = self.gen_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
743 |
+
|
744 |
+
return output_text
|
745 |
+
|
746 |
+
except Exception as e:
|
747 |
+
debug_print(f"Error generating text: {str(e)}")
|
748 |
+
return "I apologize, but I'm unable to generate a response at this time. Please try again later."
|
749 |
+
|
750 |
+
def _generate_attention_map(self, image):
|
751 |
+
"""Generate a simplified attention map for the image"""
|
752 |
+
try:
|
753 |
+
# Convert to numpy array
|
754 |
+
img_np = np.array(image.resize((224, 224)))
|
755 |
+
|
756 |
+
# Create a simple heatmap (this is a placeholder - real implementation would use model attention)
|
757 |
+
heatmap = np.zeros((224, 224), dtype=np.float32)
|
758 |
+
|
759 |
+
# Add some random "attention" areas
|
760 |
+
for _ in range(3):
|
761 |
+
x, y = np.random.randint(50, 174, 2)
|
762 |
+
radius = np.random.randint(20, 50)
|
763 |
+
for i in range(224):
|
764 |
+
for j in range(224):
|
765 |
+
dist = np.sqrt((i - x)**2 + (j - y)**2)
|
766 |
+
if dist < radius:
|
767 |
+
heatmap[i, j] += max(0, 1 - dist/radius)
|
768 |
+
|
769 |
+
# Normalize
|
770 |
+
heatmap = heatmap / heatmap.max()
|
771 |
+
|
772 |
+
# Apply colormap
|
773 |
+
heatmap_colored = cv2.applyColorMap((heatmap * 255).astype(np.uint8), cv2.COLORMAP_JET)
|
774 |
+
|
775 |
+
# Overlay on original image
|
776 |
+
img_rgb = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
777 |
+
overlay = cv2.addWeighted(img_rgb, 0.7, heatmap_colored, 0.3, 0)
|
778 |
+
|
779 |
+
# Convert to base64 for API response
|
780 |
+
_, buffer = cv2.imencode('.png', overlay)
|
781 |
+
img_str = base64.b64encode(buffer).decode('utf-8')
|
782 |
+
|
783 |
+
return img_str
|
784 |
+
|
785 |
+
except Exception as e:
|
786 |
+
debug_print(f"Error generating attention map: {str(e)}")
|
787 |
+
return None
|
788 |
+
|
789 |
+
def cleanup(self):
|
790 |
+
"""Clean up resources"""
|
791 |
+
debug_print("Cleaning up resources...")
|
792 |
+
|
793 |
+
# Unload models
|
794 |
+
if hasattr(self, 'text_model') and isinstance(self.text_model, LazyModel):
|
795 |
+
self.text_model.unload()
|
796 |
+
|
797 |
+
if hasattr(self, 'gen_model') and isinstance(self.gen_model, LazyModel):
|
798 |
+
self.gen_model.unload()
|
799 |
+
|
800 |
+
# Clear caches
|
801 |
+
if hasattr(self, 'embedding_cache'):
|
802 |
+
self.embedding_cache.clear()
|
803 |
+
|
804 |
+
if hasattr(self, 'query_cache'):
|
805 |
+
self.query_cache.clear()
|
806 |
+
|
807 |
+
# Force garbage collection
|
808 |
+
gc.collect()
|
809 |
+
if torch.cuda.is_available():
|
810 |
+
torch.cuda.empty_cache()
|
811 |
+
|
812 |
+
debug_print("Cleanup complete")
|
813 |
+
|
814 |
+
# === FastAPI Application ===
|
815 |
+
app = FastAPI(title="MediQuery API", description="API for MediQuery AI medical assistant")
|
816 |
+
|
817 |
+
# Add CORS middleware
|
818 |
+
app.add_middleware(
|
819 |
+
CORSMiddleware,
|
820 |
+
allow_origins=["*"], # For production, specify the actual frontend domain
|
821 |
+
allow_credentials=True,
|
822 |
+
allow_methods=["*"],
|
823 |
+
allow_headers=["*"],
|
824 |
+
)
|
825 |
+
|
826 |
+
# Initialize MediQuery system
|
827 |
+
mediquery = MediQuery()
|
828 |
+
|
829 |
+
# Define API models
|
830 |
+
class QueryRequest(BaseModel):
|
831 |
+
text: str
|
832 |
+
|
833 |
+
class QueryResponse(BaseModel):
|
834 |
+
response: str
|
835 |
+
confidence: float
|
836 |
+
sources: List[str]
|
837 |
+
error: Optional[str] = None
|
838 |
+
|
839 |
+
class ImageAnalysisResponse(BaseModel):
|
840 |
+
analysis: str
|
841 |
+
attention_map: Optional[str] = None
|
842 |
+
confidence: float
|
843 |
+
similar_cases: List[str]
|
844 |
+
error: Optional[str] = None
|
845 |
+
|
846 |
+
@app.post("/api/query", response_model=QueryResponse)
|
847 |
+
async def process_text_query(query: QueryRequest):
|
848 |
+
"""Process a text query and return relevant information"""
|
849 |
+
result = mediquery.process_query(query.text)
|
850 |
+
return result
|
851 |
+
|
852 |
+
@app.post("/api/analyze-image", response_model=ImageAnalysisResponse)
|
853 |
+
async def analyze_image(file: UploadFile = File(...)):
|
854 |
+
"""Analyze an X-ray image and return results"""
|
855 |
+
# Save uploaded file temporarily
|
856 |
+
temp_file = f"/tmp/{file.filename}"
|
857 |
+
with open(temp_file, "wb") as f:
|
858 |
+
f.write(await file.read())
|
859 |
+
|
860 |
+
# Process image
|
861 |
+
result = mediquery.process_image(temp_file)
|
862 |
+
|
863 |
+
# Clean up
|
864 |
+
os.remove(temp_file)
|
865 |
+
|
866 |
+
return result
|
867 |
+
|
868 |
+
@app.get("/api/health")
|
869 |
+
async def health_check():
|
870 |
+
"""Health check endpoint"""
|
871 |
+
return {"status": "ok", "version": "1.0.0"}
|
872 |
+
|
873 |
+
# === Gradio Interface ===
|
874 |
+
def create_gradio_interface():
|
875 |
+
"""Create a Gradio interface for the MediQuery system"""
|
876 |
+
# Define processing functions
|
877 |
+
def process_image_gradio(image):
|
878 |
+
# Save image temporarily
|
879 |
+
temp_file = "/tmp/gradio_image.png"
|
880 |
+
image.save(temp_file)
|
881 |
+
|
882 |
+
# Process image
|
883 |
+
result = mediquery.process_image(temp_file)
|
884 |
+
|
885 |
+
# Clean up
|
886 |
+
os.remove(temp_file)
|
887 |
+
|
888 |
+
# Prepare output
|
889 |
+
analysis = result.get("analysis", "Error processing image")
|
890 |
+
attention_map_b64 = result.get("attention_map")
|
891 |
+
|
892 |
+
# Convert base64 to image if available
|
893 |
+
attention_map = None
|
894 |
+
if attention_map_b64:
|
895 |
+
try:
|
896 |
+
attention_map = Image.open(io.BytesIO(base64.b64decode(attention_map_b64)))
|
897 |
+
except:
|
898 |
+
pass
|
899 |
+
|
900 |
+
return analysis, attention_map
|
901 |
+
|
902 |
+
def process_query_gradio(query):
|
903 |
+
result = mediquery.process_query(query)
|
904 |
+
return result.get("response", "Error processing query")
|
905 |
+
|
906 |
+
# Create interface
|
907 |
+
with gr.Blocks(title="MediQuery") as demo:
|
908 |
+
gr.Markdown("# MediQuery - AI Medical Assistant")
|
909 |
+
|
910 |
+
with gr.Tab("Image Analysis"):
|
911 |
+
with gr.Row():
|
912 |
+
with gr.Column():
|
913 |
+
image_input = gr.Image(type="pil", label="Upload Chest X-ray")
|
914 |
+
image_button = gr.Button("Analyze X-ray")
|
915 |
+
|
916 |
+
with gr.Column():
|
917 |
+
text_output = gr.Textbox(label="Analysis Results", lines=10)
|
918 |
+
image_output = gr.Image(label="Attention Map")
|
919 |
+
|
920 |
+
image_button.click(
|
921 |
+
fn=process_image_gradio,
|
922 |
+
inputs=[image_input],
|
923 |
+
outputs=[text_output, image_output]
|
924 |
+
)
|
925 |
+
|
926 |
+
with gr.Tab("Text Query"):
|
927 |
+
query_input = gr.Textbox(label="Medical Query", lines=3, placeholder="e.g., What does pneumonia look like on a chest X-ray?")
|
928 |
+
query_button = gr.Button("Submit Query")
|
929 |
+
query_output = gr.Textbox(label="Response", lines=10)
|
930 |
+
|
931 |
+
query_button.click(
|
932 |
+
fn=process_query_gradio,
|
933 |
+
inputs=[query_input],
|
934 |
+
outputs=[query_output]
|
935 |
+
)
|
936 |
+
|
937 |
+
gr.Markdown("## Example Queries")
|
938 |
+
gr.Examples(
|
939 |
+
examples=[
|
940 |
+
["What does pleural effusion look like?"],
|
941 |
+
["How to differentiate pneumonia from tuberculosis?"],
|
942 |
+
["What are the signs of cardiomegaly on X-ray?"]
|
943 |
+
],
|
944 |
+
inputs=[query_input]
|
945 |
+
)
|
946 |
+
|
947 |
+
return demo
|
948 |
+
|
949 |
+
# Create Gradio interface
|
950 |
+
demo = create_gradio_interface()
|
951 |
+
|
952 |
+
# Mount Gradio app to FastAPI
|
953 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
954 |
+
|
955 |
+
# Startup and shutdown events
|
956 |
+
@app.on_event("startup")
|
957 |
+
async def startup_event():
|
958 |
+
"""Initialize resources on startup"""
|
959 |
+
debug_print("API starting up...")
|
960 |
+
|
961 |
+
@app.on_event("shutdown")
|
962 |
+
async def shutdown_event():
|
963 |
+
"""Clean up resources on shutdown"""
|
964 |
+
debug_print("API shutting down...")
|
965 |
+
mediquery.cleanup()
|
966 |
+
|
967 |
+
# Run the FastAPI app with uvicorn when executed directly
|
968 |
+
if __name__ == "__main__":
|
969 |
+
import uvicorn
|
970 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
download_models.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from torchvision import models
|
4 |
+
from transformers import AutoTokenizer, AutoModel, T5ForConditionalGeneration, T5Tokenizer
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
# Create directories
|
10 |
+
os.makedirs("models/flan-t5-finetuned", exist_ok=True)
|
11 |
+
os.makedirs("knowledge_base", exist_ok=True)
|
12 |
+
|
13 |
+
print("Downloading model weights...")
|
14 |
+
|
15 |
+
# Download image model (DenseNet121)
|
16 |
+
image_model = models.densenet121(pretrained=True)
|
17 |
+
torch.save(image_model.state_dict(), "models/densenet121.pt")
|
18 |
+
print("Downloaded DenseNet121 weights")
|
19 |
+
|
20 |
+
# Download text model (BioBERT)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1")
|
22 |
+
model = AutoModel.from_pretrained("dmis-lab/biobert-v1.1")
|
23 |
+
tokenizer.save_pretrained("models/biobert")
|
24 |
+
model.save_pretrained("models/biobert")
|
25 |
+
print("Downloaded BioBERT weights")
|
26 |
+
|
27 |
+
# Download generation model (FLAN-T5)
|
28 |
+
gen_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
29 |
+
gen_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
|
30 |
+
gen_tokenizer.save_pretrained("models/flan-t5-finetuned")
|
31 |
+
gen_model.save_pretrained("models/flan-t5-finetuned")
|
32 |
+
print("Downloaded FLAN-T5 weights")
|
33 |
+
|
34 |
+
# Create a minimal knowledge base
|
35 |
+
print("Creating minimal knowledge base...")
|
36 |
+
text_data = pd.DataFrame({
|
37 |
+
'combined_text': [
|
38 |
+
"The chest X-ray shows clear lung fields with no evidence of consolidation, effusion, or pneumothorax. The heart size is normal. No acute cardiopulmonary abnormality.",
|
39 |
+
"Bilateral patchy airspace opacities consistent with multifocal pneumonia. No pleural effusion or pneumothorax. Heart size is normal.",
|
40 |
+
"Cardiomegaly with pulmonary vascular congestion and bilateral pleural effusions, consistent with congestive heart failure. No pneumothorax or pneumonia.",
|
41 |
+
"Right upper lobe opacity concerning for pneumonia. No pleural effusion or pneumothorax. Heart size is normal.",
|
42 |
+
"Left lower lobe atelectasis. No pneumothorax or pleural effusion. Heart size is normal.",
|
43 |
+
"Bilateral pleural effusions with bibasilar atelectasis. Cardiomegaly present. Findings consistent with heart failure.",
|
44 |
+
"Right pneumothorax with partial lung collapse. No pleural effusion. Heart size is normal.",
|
45 |
+
"Endotracheal tube, central venous catheter, and nasogastric tube in place. No pneumothorax or pleural effusion.",
|
46 |
+
"Hyperinflated lungs with flattened diaphragms, consistent with COPD. No acute infiltrate or effusion.",
|
47 |
+
"Multiple rib fractures on the right side. No pneumothorax or hemothorax. Lung fields are clear."
|
48 |
+
],
|
49 |
+
'valid_index': list(range(10))
|
50 |
+
})
|
51 |
+
text_data.to_csv("knowledge_base/text_data.csv", index=False)
|
52 |
+
|
53 |
+
# Create dummy FAISS indices
|
54 |
+
text_dim = 768
|
55 |
+
text_embeddings = np.random.rand(len(text_data), text_dim).astype('float32')
|
56 |
+
image_dim = 1024
|
57 |
+
image_embeddings = np.random.rand(len(text_data), image_dim).astype('float32')
|
58 |
+
|
59 |
+
# Create FAISS indices
|
60 |
+
text_index = faiss.IndexFlatL2(text_dim)
|
61 |
+
text_index.add(text_embeddings)
|
62 |
+
faiss.write_index(text_index, "knowledge_base/text_index.faiss")
|
63 |
+
|
64 |
+
image_index = faiss.IndexFlatL2(image_dim)
|
65 |
+
image_index.add(image_embeddings)
|
66 |
+
faiss.write_index(image_index, "knowledge_base/image_index.faiss")
|
67 |
+
|
68 |
+
print("Created minimal knowledge base")
|
69 |
+
print("Setup complete!")
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.10.0
|
2 |
+
torchvision>=0.11.0
|
3 |
+
transformers>=4.18.0
|
4 |
+
gradio>=3.0.0
|
5 |
+
fastapi>=0.75.0
|
6 |
+
uvicorn>=0.17.0
|
7 |
+
pandas>=1.3.0
|
8 |
+
numpy>=1.20.0
|
9 |
+
Pillow>=9.0.0
|
10 |
+
faiss-cpu>=1.7.0
|
11 |
+
opencv-python-headless>=4.5.0
|
12 |
+
matplotlib>=3.5.0
|
13 |
+
tqdm>=4.62.0
|
14 |
+
python-multipart>=0.0.5
|
setup_deployment.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from datetime import datetime
|
4 |
+
|
5 |
+
# Create a requirements.txt file for Hugging Face Spaces deployment
|
6 |
+
requirements = [
|
7 |
+
"torch>=1.10.0",
|
8 |
+
"torchvision>=0.11.0",
|
9 |
+
"transformers>=4.18.0",
|
10 |
+
"gradio>=3.0.0",
|
11 |
+
"fastapi>=0.75.0",
|
12 |
+
"uvicorn>=0.17.0",
|
13 |
+
"pandas>=1.3.0",
|
14 |
+
"numpy>=1.20.0",
|
15 |
+
"Pillow>=9.0.0",
|
16 |
+
"faiss-cpu>=1.7.0",
|
17 |
+
"opencv-python-headless>=4.5.0",
|
18 |
+
"matplotlib>=3.5.0",
|
19 |
+
"tqdm>=4.62.0",
|
20 |
+
"python-multipart>=0.0.5"
|
21 |
+
]
|
22 |
+
|
23 |
+
# Write requirements to file
|
24 |
+
with open("requirements.txt", "w") as f:
|
25 |
+
for req in requirements:
|
26 |
+
f.write(f"{req}\n")
|
27 |
+
|
28 |
+
print("Created requirements.txt file for Hugging Face Spaces deployment")
|
29 |
+
|
30 |
+
# Create a README.md file for the Hugging Face Space
|
31 |
+
readme = """# MediQuery - AI Multimodal Medical Assistant
|
32 |
+
|
33 |
+
MediQuery is an AI-powered medical assistant that analyzes chest X-rays and answers medical queries using advanced deep learning models.
|
34 |
+
|
35 |
+
## Features
|
36 |
+
|
37 |
+
- **X-ray Analysis**: Upload a chest X-ray image for AI-powered analysis
|
38 |
+
- **Medical Query**: Ask questions about medical conditions, findings, and interpretations
|
39 |
+
- **Visual Explanations**: View attention maps highlighting important areas in X-rays
|
40 |
+
- **Comprehensive Reports**: Get detailed findings and impressions in structured format
|
41 |
+
|
42 |
+
## How to Use
|
43 |
+
|
44 |
+
### Image Analysis
|
45 |
+
1. Upload a chest X-ray image
|
46 |
+
2. Click "Analyze X-ray"
|
47 |
+
3. View the analysis results and attention map
|
48 |
+
|
49 |
+
### Text Query
|
50 |
+
1. Enter your medical question
|
51 |
+
2. Click "Submit Query"
|
52 |
+
3. Read the AI-generated response
|
53 |
+
|
54 |
+
## API Documentation
|
55 |
+
|
56 |
+
This Space also provides a REST API for integration with other applications:
|
57 |
+
|
58 |
+
- `POST /api/query`: Process a text query
|
59 |
+
- `POST /api/analyze-image`: Analyze an X-ray image
|
60 |
+
- `GET /api/health`: Check API health
|
61 |
+
|
62 |
+
## About
|
63 |
+
|
64 |
+
MediQuery combines state-of-the-art image models (DenseNet/CheXNet) with medical language models (BioBERT) and a fine-tuned FLAN-T5 generator to provide accurate and informative medical assistance.
|
65 |
+
|
66 |
+
Created by Tanishk Soni
|
67 |
+
"""
|
68 |
+
|
69 |
+
# Write README to file
|
70 |
+
with open("README.md", "w") as f:
|
71 |
+
f.write(readme)
|
72 |
+
|
73 |
+
print("Created README.md file for Hugging Face Spaces")
|
74 |
+
|
75 |
+
# Create a .gitignore file
|
76 |
+
gitignore = """# Python
|
77 |
+
__pycache__/
|
78 |
+
*.py[cod]
|
79 |
+
*$py.class
|
80 |
+
*.so
|
81 |
+
.Python
|
82 |
+
env/
|
83 |
+
build/
|
84 |
+
develop-eggs/
|
85 |
+
dist/
|
86 |
+
downloads/
|
87 |
+
eggs/
|
88 |
+
.eggs/
|
89 |
+
lib/
|
90 |
+
lib64/
|
91 |
+
parts/
|
92 |
+
sdist/
|
93 |
+
var/
|
94 |
+
*.egg-info/
|
95 |
+
.installed.cfg
|
96 |
+
*.egg
|
97 |
+
|
98 |
+
# Logs
|
99 |
+
logs/
|
100 |
+
*.log
|
101 |
+
|
102 |
+
# Temporary files
|
103 |
+
/tmp/
|
104 |
+
.DS_Store
|
105 |
+
|
106 |
+
# Virtual Environment
|
107 |
+
venv/
|
108 |
+
ENV/
|
109 |
+
|
110 |
+
# IDE
|
111 |
+
.idea/
|
112 |
+
.vscode/
|
113 |
+
*.swp
|
114 |
+
*.swo
|
115 |
+
|
116 |
+
# Model files (add these manually)
|
117 |
+
*.pt
|
118 |
+
*.pth
|
119 |
+
*.bin
|
120 |
+
*.faiss
|
121 |
+
"""
|
122 |
+
|
123 |
+
# Write .gitignore to file
|
124 |
+
with open(".gitignore", "w") as f:
|
125 |
+
f.write(gitignore)
|
126 |
+
|
127 |
+
print("Created .gitignore file")
|
128 |
+
|
129 |
+
# Create a simple script to download model weights
|
130 |
+
download_script = """import os
|
131 |
+
import torch
|
132 |
+
from torchvision import models
|
133 |
+
from transformers import AutoTokenizer, AutoModel, T5ForConditionalGeneration, T5Tokenizer
|
134 |
+
import faiss
|
135 |
+
import numpy as np
|
136 |
+
import pandas as pd
|
137 |
+
|
138 |
+
# Create directories
|
139 |
+
os.makedirs("models/flan-t5-finetuned", exist_ok=True)
|
140 |
+
os.makedirs("knowledge_base", exist_ok=True)
|
141 |
+
|
142 |
+
print("Downloading model weights...")
|
143 |
+
|
144 |
+
# Download image model (DenseNet121)
|
145 |
+
image_model = models.densenet121(pretrained=True)
|
146 |
+
torch.save(image_model.state_dict(), "models/densenet121.pt")
|
147 |
+
print("Downloaded DenseNet121 weights")
|
148 |
+
|
149 |
+
# Download text model (BioBERT)
|
150 |
+
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1")
|
151 |
+
model = AutoModel.from_pretrained("dmis-lab/biobert-v1.1")
|
152 |
+
tokenizer.save_pretrained("models/biobert")
|
153 |
+
model.save_pretrained("models/biobert")
|
154 |
+
print("Downloaded BioBERT weights")
|
155 |
+
|
156 |
+
# Download generation model (FLAN-T5)
|
157 |
+
gen_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
158 |
+
gen_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
|
159 |
+
gen_tokenizer.save_pretrained("models/flan-t5-finetuned")
|
160 |
+
gen_model.save_pretrained("models/flan-t5-finetuned")
|
161 |
+
print("Downloaded FLAN-T5 weights")
|
162 |
+
|
163 |
+
# Create a minimal knowledge base
|
164 |
+
print("Creating minimal knowledge base...")
|
165 |
+
text_data = pd.DataFrame({
|
166 |
+
'combined_text': [
|
167 |
+
"The chest X-ray shows clear lung fields with no evidence of consolidation, effusion, or pneumothorax. The heart size is normal. No acute cardiopulmonary abnormality.",
|
168 |
+
"Bilateral patchy airspace opacities consistent with multifocal pneumonia. No pleural effusion or pneumothorax. Heart size is normal.",
|
169 |
+
"Cardiomegaly with pulmonary vascular congestion and bilateral pleural effusions, consistent with congestive heart failure. No pneumothorax or pneumonia.",
|
170 |
+
"Right upper lobe opacity concerning for pneumonia. No pleural effusion or pneumothorax. Heart size is normal.",
|
171 |
+
"Left lower lobe atelectasis. No pneumothorax or pleural effusion. Heart size is normal.",
|
172 |
+
"Bilateral pleural effusions with bibasilar atelectasis. Cardiomegaly present. Findings consistent with heart failure.",
|
173 |
+
"Right pneumothorax with partial lung collapse. No pleural effusion. Heart size is normal.",
|
174 |
+
"Endotracheal tube, central venous catheter, and nasogastric tube in place. No pneumothorax or pleural effusion.",
|
175 |
+
"Hyperinflated lungs with flattened diaphragms, consistent with COPD. No acute infiltrate or effusion.",
|
176 |
+
"Multiple rib fractures on the right side. No pneumothorax or hemothorax. Lung fields are clear."
|
177 |
+
],
|
178 |
+
'valid_index': list(range(10))
|
179 |
+
})
|
180 |
+
text_data.to_csv("knowledge_base/text_data.csv", index=False)
|
181 |
+
|
182 |
+
# Create dummy FAISS indices
|
183 |
+
text_dim = 768
|
184 |
+
text_embeddings = np.random.rand(len(text_data), text_dim).astype('float32')
|
185 |
+
image_dim = 1024
|
186 |
+
image_embeddings = np.random.rand(len(text_data), image_dim).astype('float32')
|
187 |
+
|
188 |
+
# Create FAISS indices
|
189 |
+
text_index = faiss.IndexFlatL2(text_dim)
|
190 |
+
text_index.add(text_embeddings)
|
191 |
+
faiss.write_index(text_index, "knowledge_base/text_index.faiss")
|
192 |
+
|
193 |
+
image_index = faiss.IndexFlatL2(image_dim)
|
194 |
+
image_index.add(image_embeddings)
|
195 |
+
faiss.write_index(image_index, "knowledge_base/image_index.faiss")
|
196 |
+
|
197 |
+
print("Created minimal knowledge base")
|
198 |
+
print("Setup complete!")
|
199 |
+
"""
|
200 |
+
|
201 |
+
# Write download script to file
|
202 |
+
with open("download_models.py", "w") as f:
|
203 |
+
f.write(download_script)
|
204 |
+
|
205 |
+
print("Created download_models.py script")
|
206 |
+
|
207 |
+
# Create a Hugging Face Space configuration file
|
208 |
+
space_config = {
|
209 |
+
"title": "MediQuery - AI Medical Assistant",
|
210 |
+
"emoji": "🩺",
|
211 |
+
"colorFrom": "blue",
|
212 |
+
"colorTo": "indigo",
|
213 |
+
"sdk": "gradio",
|
214 |
+
"sdk_version": "3.36.1",
|
215 |
+
"python_version": "3.10",
|
216 |
+
"app_file": "app.py",
|
217 |
+
"pinned": False
|
218 |
+
}
|
219 |
+
|
220 |
+
# Write space config to file
|
221 |
+
with open("README.md", "a") as f:
|
222 |
+
f.write("\n\n---\ntags: [healthcare, medical, xray, radiology, multimodal]\n")
|
223 |
+
|
224 |
+
print("Updated README.md with tags for Hugging Face Spaces")
|
225 |
+
|
226 |
+
print("All deployment files created successfully!")
|