File size: 4,317 Bytes
a1c932a
 
 
 
 
 
 
d03c47c
 
a1c932a
d03c47c
a1c932a
 
 
 
 
 
 
712f1db
a1c932a
 
712f1db
 
3dc870c
 
d03c47c
712f1db
 
29f706c
d03c47c
 
 
beccd45
 
 
d03c47c
29f706c
 
 
d03c47c
beccd45
 
29f706c
 
 
 
 
 
 
 
 
a1c932a
d03c47c
a1c932a
 
 
 
 
 
 
 
d03c47c
a1c932a
beccd45
a1c932a
d03c47c
a1c932a
712f1db
a1c932a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d03c47c
a1c932a
 
 
 
 
 
 
 
 
 
 
 
d03c47c
a1c932a
 
 
 
 
 
 
 
d03c47c
a1c932a
 
 
 
 
 
 
 
 
 
 
 
beccd45
 
 
 
 
 
 
 
 
 
a1c932a
beccd45
712f1db
d03c47c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from fastapi import FastAPI, File, UploadFile, HTTPException
from pydantic import BaseModel
import base64
import io
import os

from PIL import Image
import torch
import numpy as np

# Import your custom utility functions
from utils import (
    check_ocr_box,
    get_yolo_model,
    get_caption_model_processor,
    get_som_labeled_img,
)

# Load the YOLO model using the ultralytics class instead of torch.load
from ultralytics import YOLO

# Use the YOLO constructor to load the model properly
yolo_model = YOLO("weights/icon_detect/best.pt")
print(f"YOLO model type: {type(yolo_model)}")

# Load the captioning model (Florence-2)
from transformers import AutoProcessor, AutoModelForCausalLM

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32

processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
try:
    model = AutoModelForCausalLM.from_pretrained(
        "weights/icon_caption_florence",
        torch_dtype=dtype,
        trust_remote_code=True
    ).to(device)
except Exception as e:
    print(f"Error loading caption model: {str(e)}")
    model = AutoModelForCausalLM.from_pretrained(
        "weights/icon_caption_florence",
        torch_dtype=torch.float32,
        trust_remote_code=True
    ).to("cpu")

if not hasattr(model.config, 'vision_config'):
    model.config.vision_config = {}
if 'model_type' not in model.config.vision_config:
    model.config.vision_config['model_type'] = 'davit'

caption_model_processor = {"processor": processor, "model": model}
print("Finish loading caption model!")

app = FastAPI()

class ProcessResponse(BaseModel):
    image: str  # Base64 encoded image
    parsed_content_list: str
    label_coordinates: str

def process(image_input: Image.Image, box_threshold: float, iou_threshold: float) -> ProcessResponse:
    image_save_path = "imgs/saved_image_demo.png"
    os.makedirs(os.path.dirname(image_save_path), exist_ok=True)
    image_input.save(image_save_path)
    
    image = Image.open(image_save_path)
    box_overlay_ratio = image.size[0] / 3200
    draw_bbox_config = {
        "text_scale": 0.8 * box_overlay_ratio,
        "text_thickness": max(int(2 * box_overlay_ratio), 1),
        "text_padding": max(int(3 * box_overlay_ratio), 1),
        "thickness": max(int(3 * box_overlay_ratio), 1),
    }

    ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
        image_save_path,
        display_img=False,
        output_bb_format="xyxy",
        goal_filtering=None,
        easyocr_args={"paragraph": False, "text_threshold": 0.9},
        use_paddleocr=True,
    )
    text, ocr_bbox = ocr_bbox_rslt

    dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
        image_save_path,
        yolo_model,
        BOX_TRESHOLD=box_threshold,
        output_coord_in_ratio=True,
        ocr_bbox=ocr_bbox,
        draw_bbox_config=draw_bbox_config,
        caption_model_processor=caption_model_processor,
        ocr_text=text,
        iou_threshold=iou_threshold,
    )
    image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
    print("Finish processing")
    parsed_content_list_str = "\n".join(parsed_content_list)

    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")

    return ProcessResponse(
        image=img_str,
        parsed_content_list=parsed_content_list_str,
        label_coordinates=str(label_coordinates),
    )

@app.post("/process_image", response_model=ProcessResponse)
async def process_image(
    image_file: UploadFile = File(...),
    box_threshold: float = 0.05,
    iou_threshold: float = 0.1,
):
    try:
        contents = await image_file.read()
        image_input = Image.open(io.BytesIO(contents)).convert("RGB")
        
        print(f"Processing image: {image_file.filename}")
        print(f"Image size: {image_input.size}")
        
        response = process(image_input, box_threshold, iou_threshold)
        if not response.image:
            raise ValueError("Empty image in response")
            
        return response
        
    except Exception as e:
        import traceback
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=str(e))