Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -37,23 +37,33 @@ except:
|
|
37 |
yolo_model = torch.load("weights/icon_detect/best.pt", map_location="cpu", weights_only=False)["model"]
|
38 |
|
39 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
try:
|
46 |
model = AutoModelForCausalLM.from_pretrained(
|
47 |
"weights/icon_caption_florence",
|
48 |
-
torch_dtype=
|
49 |
-
trust_remote_code=True
|
50 |
-
).to(
|
51 |
-
except:
|
|
|
|
|
52 |
model = AutoModelForCausalLM.from_pretrained(
|
53 |
"weights/icon_caption_florence",
|
54 |
-
torch_dtype=torch.
|
55 |
-
trust_remote_code=True
|
56 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
caption_model_processor = {"processor": processor, "model": model}
|
58 |
print("finish loading model!!!")
|
59 |
|
|
|
37 |
yolo_model = torch.load("weights/icon_detect/best.pt", map_location="cpu", weights_only=False)["model"]
|
38 |
|
39 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
40 |
+
import torch
|
41 |
|
42 |
+
# Check if CUDA is available
|
43 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
+
dtype = torch.float16 if device == "cuda" else torch.float32 # Use float32 on CPU
|
45 |
|
46 |
try:
|
47 |
model = AutoModelForCausalLM.from_pretrained(
|
48 |
"weights/icon_caption_florence",
|
49 |
+
torch_dtype=dtype, # Dynamic dtype based on device
|
50 |
+
trust_remote_code=True
|
51 |
+
).to(device)
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error loading model: {str(e)}")
|
54 |
+
# Fallback to CPU with float32
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
56 |
"weights/icon_caption_florence",
|
57 |
+
torch_dtype=torch.float32,
|
58 |
+
trust_remote_code=True
|
59 |
+
).to("cpu")
|
60 |
+
|
61 |
+
# Force config for DaViT vision tower
|
62 |
+
if not hasattr(model.config, 'vision_config'):
|
63 |
+
model.config.vision_config = {}
|
64 |
+
if 'model_type' not in model.config.vision_config:
|
65 |
+
model.config.vision_config['model_type'] = 'davit'
|
66 |
+
|
67 |
caption_model_processor = {"processor": processor, "model": model}
|
68 |
print("finish loading model!!!")
|
69 |
|