File size: 4,797 Bytes
a1c932a
 
 
 
056fb25
 
a1c932a
d03c47c
a1c932a
ea2ade6
a1c932a
 
 
 
 
 
056fb25
ea2ade6
056fb25
 
 
9c616dc
056fb25
 
9c616dc
056fb25
 
 
 
 
 
ea2ade6
056fb25
beccd45
056fb25
 
 
beccd45
 
ea2ade6
 
 
056fb25
 
beccd45
 
ea2ade6
 
 
056fb25
a1c932a
056fb25
a1c932a
 
 
 
 
 
 
 
056fb25
a1c932a
056fb25
a1c932a
13c1ab1
a1c932a
712f1db
a1c932a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056fb25
13c1ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1c932a
13c1ab1
a1c932a
13c1ab1
a1c932a
 
 
 
 
 
056fb25
a1c932a
 
 
13c1ab1
a1c932a
 
 
 
 
 
 
 
 
056fb25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1c932a
056fb25
 
 
 
00bda1b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from fastapi import FastAPI, File, UploadFile, HTTPException
from pydantic import BaseModel
import base64
import io
import os
import logging
from PIL import Image
import torch

# Existing imports
from utils import (
    check_ocr_box,
    get_yolo_model,
    get_caption_model_processor,
    get_som_labeled_img,
)
from transformers import AutoProcessor, AutoModelForCausalLM

# Configure logging
logging.basicConfig(level=logging.DEBUG)  # Changed to DEBUG for more verbosity
logger = logging.getLogger(__name__)

# Load YOLO model
yolo_model = get_yolo_model(model_path="weights/best.pt")

# Handle device placement
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if str(device) == "cuda":
    yolo_model = yolo_model.cuda()
else:
    yolo_model = yolo_model.cpu()

# Load caption model and processor
try:
    processor = AutoProcessor.from_pretrained(
        "microsoft/Florence-2-base", trust_remote_code=True
    )
    model = AutoModelForCausalLM.from_pretrained(
        "weights/icon_caption_florence",
        torch_dtype=torch.float16,
        trust_remote_code=True,
    ).to("cuda")
except Exception as e:
    logger.warning(f"Failed to load caption model on GPU: {e}. Falling back to CPU.")
    model = AutoModelForCausalLM.from_pretrained(
        "weights/icon_caption_florence",
        torch_dtype=torch.float16,
        trust_remote_code=True,
    )

caption_model_processor = {"processor": processor, "model": model}
logger.info("Finished loading models!!!")

app = FastAPI()

class ProcessResponse(BaseModel):
    image: str  # Base64 encoded image
    parsed_content_list: str
    label_coordinates: str

def process(image_input: Image.Image, box_threshold: float, iou_threshold: float) -> ProcessResponse:
    image_save_path = "imgs/saved_image_demo.png"
    os.makedirs(os.path.dirname(image_save_path), exist_ok=True)
    image_input.save(image_save_path)
    
    image = Image.open(image_save_path)
    box_overlay_ratio = image.size[0] / 3200
    draw_bbox_config = {
        "text_scale": 0.8 * box_overlay_ratio,
        "text_thickness": max(int(2 * box_overlay_ratio), 1),
        "text_padding": max(int(3 * box_overlay_ratio), 1),
        "thickness": max(int(3 * box_overlay_ratio), 1),
    }

    ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
        image_save_path,
        display_img=False,
        output_bb_format="xyxy",
        goal_filtering=None,
        easyocr_args={"paragraph": False, "text_threshold": 0.9},
        use_paddleocr=True,
    )
    text, ocr_bbox = ocr_bbox_rslt

    dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
        image_save_path,
        yolo_model,
        BOX_TRESHOLD=box_threshold,
        output_coord_in_ratio=True,
        ocr_bbox=ocr_bbox,
        draw_bbox_config=draw_bbox_config,
        caption_model_processor=caption_model_processor,
        ocr_text=text,
        iou_threshold=iou_threshold,
    )

    # Log parsed_content_list to inspect its structure before joining
    logger.info(f"Parsed content list before join: {parsed_content_list}")
    
    # Ensure parsed_content_list is a list of strings, not dictionaries
    parsed_content_list_str = "\n".join([str(item) for item in parsed_content_list])

    image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
    print("Finish processing")

    # Convert the image to base64
    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")

    return ProcessResponse(
        image=img_str,
        parsed_content_list=parsed_content_list_str,
        label_coordinates=str(label_coordinates),
    )


@app.post("/process_image", response_model=ProcessResponse)
async def process_image(
    image_file: UploadFile = File(...),
    box_threshold: float = 0.05,
    iou_threshold: float = 0.1,
):
    try:
        contents = await image_file.read()
        image_input = Image.open(io.BytesIO(contents)).convert("RGB")
        
        logger.info(f"Processing image: {image_file.filename}")
        logger.info(f"Image size: {image_input.size}")
        
        # Debugging the input image
        if not image_input:
            raise ValueError("Image input is empty or invalid.")
        
        response = process(image_input, box_threshold, iou_threshold)
        
        # Ensure the response contains an image
        if not response.image:
            raise ValueError("Empty image in response")
        
        logger.info("Processing complete, returning response.")
        return response
        
    except Exception as e:
        logger.error(f"Error processing image: {e}")
        import traceback
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=str(e))