Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,71 +1,76 @@
|
|
1 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
|
|
2 |
from pydantic import BaseModel
|
|
|
3 |
import base64
|
4 |
import io
|
5 |
-
import os
|
6 |
-
import logging
|
7 |
from PIL import Image
|
8 |
import torch
|
|
|
|
|
9 |
|
10 |
# Existing imports
|
|
|
|
|
|
|
|
|
|
|
11 |
from utils import (
|
12 |
check_ocr_box,
|
13 |
get_yolo_model,
|
14 |
get_caption_model_processor,
|
15 |
get_som_labeled_img,
|
16 |
)
|
17 |
-
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
logger = logging.getLogger(__name__)
|
22 |
|
23 |
-
|
24 |
-
yolo_model = get_yolo_model(model_path="weights/best.pt")
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
# Load caption model and processor
|
34 |
try:
|
35 |
-
processor = AutoProcessor.from_pretrained(
|
36 |
-
"microsoft/Florence-2-base", trust_remote_code=True
|
37 |
-
)
|
38 |
model = AutoModelForCausalLM.from_pretrained(
|
39 |
"weights/icon_caption_florence",
|
40 |
torch_dtype=torch.float16,
|
41 |
trust_remote_code=True,
|
42 |
).to("cuda")
|
43 |
-
except
|
44 |
-
logger.warning(f"Failed to load caption model on GPU: {e}. Falling back to CPU.")
|
45 |
model = AutoModelForCausalLM.from_pretrained(
|
46 |
"weights/icon_caption_florence",
|
47 |
torch_dtype=torch.float16,
|
48 |
trust_remote_code=True,
|
49 |
)
|
50 |
-
|
51 |
caption_model_processor = {"processor": processor, "model": model}
|
52 |
-
|
53 |
|
54 |
app = FastAPI()
|
55 |
|
|
|
56 |
class ProcessResponse(BaseModel):
|
57 |
image: str # Base64 encoded image
|
58 |
parsed_content_list: str
|
59 |
label_coordinates: str
|
60 |
|
61 |
-
|
|
|
|
|
|
|
62 |
image_save_path = "imgs/saved_image_demo.png"
|
63 |
-
os.makedirs(os.path.dirname(image_save_path), exist_ok=True)
|
64 |
image_input.save(image_save_path)
|
65 |
-
|
66 |
-
logger.info(f"Saved image for processing: {image_save_path}")
|
67 |
-
|
68 |
-
# Open image and prepare it for further processing
|
69 |
image = Image.open(image_save_path)
|
70 |
box_overlay_ratio = image.size[0] / 3200
|
71 |
draw_bbox_config = {
|
@@ -75,7 +80,6 @@ def process(image_input: Image.Image, box_threshold: float, iou_threshold: float
|
|
75 |
"thickness": max(int(3 * box_overlay_ratio), 1),
|
76 |
}
|
77 |
|
78 |
-
# OCR and YOLO box processing
|
79 |
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
80 |
image_save_path,
|
81 |
display_img=False,
|
@@ -85,40 +89,33 @@ def process(image_input: Image.Image, box_threshold: float, iou_threshold: float
|
|
85 |
use_paddleocr=True,
|
86 |
)
|
87 |
text, ocr_bbox = ocr_bbox_rslt
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
ocr_text=text,
|
100 |
-
iou_threshold=iou_threshold,
|
101 |
-
)
|
102 |
-
except Exception as e:
|
103 |
-
logger.error(f"Error during labeling and captioning: {e}")
|
104 |
-
raise
|
105 |
-
|
106 |
-
logger.info("Finished processing image with YOLO and captioning.")
|
107 |
-
|
108 |
-
# Convert the image to base64 string
|
109 |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
|
|
110 |
parsed_content_list_str = "\n".join(parsed_content_list)
|
111 |
|
|
|
112 |
buffered = io.BytesIO()
|
113 |
image.save(buffered, format="PNG")
|
114 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
115 |
|
116 |
return ProcessResponse(
|
117 |
image=img_str,
|
118 |
-
parsed_content_list=parsed_content_list_str,
|
119 |
label_coordinates=str(label_coordinates),
|
120 |
)
|
121 |
|
|
|
122 |
@app.post("/process_image", response_model=ProcessResponse)
|
123 |
async def process_image(
|
124 |
image_file: UploadFile = File(...),
|
@@ -128,26 +125,8 @@ async def process_image(
|
|
128 |
try:
|
129 |
contents = await image_file.read()
|
130 |
image_input = Image.open(io.BytesIO(contents)).convert("RGB")
|
131 |
-
|
132 |
-
logger.info(f"Processing image: {image_file.filename}")
|
133 |
-
logger.info(f"Image size: {image_input.size}")
|
134 |
-
|
135 |
-
# Debugging the input image
|
136 |
-
if not image_input:
|
137 |
-
raise ValueError("Image input is empty or invalid.")
|
138 |
-
|
139 |
-
response = process(image_input, box_threshold, iou_threshold)
|
140 |
-
|
141 |
-
# Ensure the response contains an image
|
142 |
-
if not response.image:
|
143 |
-
raise ValueError("Empty image in response")
|
144 |
-
|
145 |
-
logger.info("Processing complete, returning response.")
|
146 |
-
return response
|
147 |
-
|
148 |
except Exception as e:
|
149 |
-
|
150 |
-
import traceback
|
151 |
-
traceback.print_exc()
|
152 |
-
raise HTTPException(status_code=500, detail=str(e))
|
153 |
|
|
|
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
from pydantic import BaseModel
|
4 |
+
from typing import Optional
|
5 |
import base64
|
6 |
import io
|
|
|
|
|
7 |
from PIL import Image
|
8 |
import torch
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
|
12 |
# Existing imports
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
from PIL import Image
|
16 |
+
import io
|
17 |
+
|
18 |
from utils import (
|
19 |
check_ocr_box,
|
20 |
get_yolo_model,
|
21 |
get_caption_model_processor,
|
22 |
get_som_labeled_img,
|
23 |
)
|
24 |
+
import torch
|
25 |
|
26 |
+
# yolo_model = get_yolo_model(model_path='/data/icon_detect/best.pt')
|
27 |
+
# caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="/data/icon_caption_florence")
|
|
|
28 |
|
29 |
+
from ultralytics import YOLO
|
|
|
30 |
|
31 |
+
# if not os.path.exists("/data/icon_detect"):
|
32 |
+
# os.makedirs("/data/icon_detect")
|
33 |
+
|
34 |
+
try:
|
35 |
+
yolo_model = YOLO("weights/icon_detect/best.pt").to("cuda")
|
36 |
+
except:
|
37 |
+
yolo_model = YOLO("weights/icon_detect/best.pt")
|
38 |
+
|
39 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
40 |
+
|
41 |
+
processor = AutoProcessor.from_pretrained(
|
42 |
+
"microsoft/Florence-2-base", trust_remote_code=True
|
43 |
+
)
|
44 |
|
|
|
45 |
try:
|
|
|
|
|
|
|
46 |
model = AutoModelForCausalLM.from_pretrained(
|
47 |
"weights/icon_caption_florence",
|
48 |
torch_dtype=torch.float16,
|
49 |
trust_remote_code=True,
|
50 |
).to("cuda")
|
51 |
+
except:
|
|
|
52 |
model = AutoModelForCausalLM.from_pretrained(
|
53 |
"weights/icon_caption_florence",
|
54 |
torch_dtype=torch.float16,
|
55 |
trust_remote_code=True,
|
56 |
)
|
|
|
57 |
caption_model_processor = {"processor": processor, "model": model}
|
58 |
+
print("finish loading model!!!")
|
59 |
|
60 |
app = FastAPI()
|
61 |
|
62 |
+
|
63 |
class ProcessResponse(BaseModel):
|
64 |
image: str # Base64 encoded image
|
65 |
parsed_content_list: str
|
66 |
label_coordinates: str
|
67 |
|
68 |
+
|
69 |
+
def process(
|
70 |
+
image_input: Image.Image, box_threshold: float, iou_threshold: float
|
71 |
+
) -> ProcessResponse:
|
72 |
image_save_path = "imgs/saved_image_demo.png"
|
|
|
73 |
image_input.save(image_save_path)
|
|
|
|
|
|
|
|
|
74 |
image = Image.open(image_save_path)
|
75 |
box_overlay_ratio = image.size[0] / 3200
|
76 |
draw_bbox_config = {
|
|
|
80 |
"thickness": max(int(3 * box_overlay_ratio), 1),
|
81 |
}
|
82 |
|
|
|
83 |
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
84 |
image_save_path,
|
85 |
display_img=False,
|
|
|
89 |
use_paddleocr=True,
|
90 |
)
|
91 |
text, ocr_bbox = ocr_bbox_rslt
|
92 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
93 |
+
image_save_path,
|
94 |
+
yolo_model,
|
95 |
+
BOX_TRESHOLD=box_threshold,
|
96 |
+
output_coord_in_ratio=True,
|
97 |
+
ocr_bbox=ocr_bbox,
|
98 |
+
draw_bbox_config=draw_bbox_config,
|
99 |
+
caption_model_processor=caption_model_processor,
|
100 |
+
ocr_text=text,
|
101 |
+
iou_threshold=iou_threshold,
|
102 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
104 |
+
print("finish processing")
|
105 |
parsed_content_list_str = "\n".join(parsed_content_list)
|
106 |
|
107 |
+
# Encode image to base64
|
108 |
buffered = io.BytesIO()
|
109 |
image.save(buffered, format="PNG")
|
110 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
111 |
|
112 |
return ProcessResponse(
|
113 |
image=img_str,
|
114 |
+
parsed_content_list=str(parsed_content_list_str),
|
115 |
label_coordinates=str(label_coordinates),
|
116 |
)
|
117 |
|
118 |
+
|
119 |
@app.post("/process_image", response_model=ProcessResponse)
|
120 |
async def process_image(
|
121 |
image_file: UploadFile = File(...),
|
|
|
125 |
try:
|
126 |
contents = await image_file.read()
|
127 |
image_input = Image.open(io.BytesIO(contents)).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
except Exception as e:
|
129 |
+
raise HTTPException(status_code=400, detail="Invalid image file")
|
|
|
|
|
|
|
130 |
|
131 |
+
response = process(image_input, box_threshold, iou_threshold)
|
132 |
+
return response
|