Predicting single-cell perturbation responses for unseen drugs - Notebooks
These notebooks are meant to showcase how to analyse a trained chemCPA model. They also reproduce the results from the paper.
To load the model configs please use the provided .json
file and define your load_config
function similar to this:
import json
from tqdm.auto import tqdm
from chemCPA.paths import PROJECT_DIR
def load_config(seml_collection, model_hash):
file_path = PROJECT_DIR / f"{seml_collection}.json" # Provide path to json
with open(file_path) as f:
file_data = json.load(f)
for _config in tqdm(file_data):
if _config["config_hash"] == model_hash:
# print(config)
config = _config["config"]
config["config_hash"] = _config["config_hash"]
return config
Make sure that the dataset paths are set correctly. Here is how to manually change this in the config:
from chemCPA.paths import DATA_DIR
config["dataset"]["data_params"]["dataset_path"] = DATA_DIR / config["dataset"]["data_params"]["dataset_path"].split('/')[-1]
Similarly, the CHECKPOINT_DIR
should align with the folder where you have stored the trained chemCPA models, this is used in the utils.py
:
from chemCPA.paths import CHECKPOINT_DIR