github-actions[bot]
HF snapshot
a48f0ae
"""
The vocabulary building scripts.
"""
import os
from grover.data.torchvocab import MolVocab
def build():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_path",
default="../../dataset/grover_new_dataset/druglike_merged_refine2.csv",
type=str,
)
parser.add_argument(
"--vocab_save_folder", default="../../dataset/grover_new_dataset", type=str
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="Will be the first part of the vocab file name. If it is None,"
"the vocab files will be: atom_vocab.pkl and bond_vocab.pkl",
)
parser.add_argument("--vocab_max_size", type=int, default=None)
parser.add_argument("--vocab_min_freq", type=int, default=1)
args = parser.parse_args()
# fin = open(args.data_path, 'r')
# lines = fin.readlines()
for vocab_type in ["atom", "bond"]:
vocab_file = f"{vocab_type}_vocab.pkl"
if args.dataset_name is not None:
vocab_file = args.dataset_name + "_" + vocab_file
vocab_save_path = os.path.join(args.vocab_save_folder, vocab_file)
os.makedirs(os.path.dirname(vocab_save_path), exist_ok=True)
vocab = MolVocab(
file_path=args.data_path,
max_size=args.vocab_max_size,
min_freq=args.vocab_min_freq,
num_workers=100,
vocab_type=vocab_type,
)
print(f"{vocab_type} vocab size", len(vocab))
vocab.save_vocab(vocab_save_path)
if __name__ == "__main__":
build()