File size: 1,611 Bytes
a48f0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""
The vocabulary building scripts.
"""
import os

from grover.data.torchvocab import MolVocab


def build():
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--data_path",
        default="../../dataset/grover_new_dataset/druglike_merged_refine2.csv",
        type=str,
    )
    parser.add_argument(
        "--vocab_save_folder", default="../../dataset/grover_new_dataset", type=str
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help="Will be the first part of the vocab file name. If it is None,"
        "the vocab files will be: atom_vocab.pkl and bond_vocab.pkl",
    )
    parser.add_argument("--vocab_max_size", type=int, default=None)
    parser.add_argument("--vocab_min_freq", type=int, default=1)
    args = parser.parse_args()

    # fin = open(args.data_path, 'r')
    # lines = fin.readlines()

    for vocab_type in ["atom", "bond"]:
        vocab_file = f"{vocab_type}_vocab.pkl"
        if args.dataset_name is not None:
            vocab_file = args.dataset_name + "_" + vocab_file
        vocab_save_path = os.path.join(args.vocab_save_folder, vocab_file)

        os.makedirs(os.path.dirname(vocab_save_path), exist_ok=True)
        vocab = MolVocab(
            file_path=args.data_path,
            max_size=args.vocab_max_size,
            min_freq=args.vocab_min_freq,
            num_workers=100,
            vocab_type=vocab_type,
        )
        print(f"{vocab_type} vocab size", len(vocab))
        vocab.save_vocab(vocab_save_path)


if __name__ == "__main__":
    build()