File size: 26,540 Bytes
1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 1bc509f 072b941 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Three.js Dynamic Simulated City</title>
<script src="https://cdn.tailwindcss.com"></script>
<style>
body { margin: 0; overflow: hidden; background-color: #000000; color: #e2e8f0; font-family: 'Inter', sans-serif; }
canvas { display: block; }
#infoPanel {
position: absolute;
top: 20px;
left: 20px;
background-color: rgba(0,0,0,0.75);
padding: 15px;
border-radius: 8px;
color: white;
font-size: 0.85em;
max-width: 320px;
box-shadow: 0 4px 12px rgba(0,0,0,0.5);
max-height: 90vh;
overflow-y: auto;
}
#infoPanel h2 {
margin-top: 0;
font-size: 1.1em;
border-bottom: 1px solid #4a5568;
padding-bottom: 5px;
margin-bottom: 10px;
}
#infoPanel p, #infoPanel ul {
margin-bottom: 8px;
line-height: 1.5;
}
#infoPanel ul {
list-style: disc;
padding-left: 20px;
}
#loadingScreen {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: #111827; /* Darker initial loading */
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
z-index: 9999;
color: white;
font-size: 1.5em;
}
.spinner {
border: 4px solid rgba(255, 255, 255, 0.3);
border-radius: 50%;
border-top: 4px solid #fff;
width: 40px;
height: 40px;
animation: spin 1s linear infinite;
margin-bottom: 20px;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap" rel="stylesheet">
</head>
<body>
<div id="loadingScreen">
<div class="spinner"></div>
Loading Dynamic City...
</div>
<div id="infoPanel">
<h2>Dynamic Simulated City</h2>
<p>Observe the day/night cycle, moving entities, and dynamic building windows. This visualization demonstrates how a more complex simulation could be represented.</p>
<p><strong>Features Added:</strong></p>
<ul>
<li>Moving cars and people (simple paths).</li>
<li>Birds flying in the sky.</li>
<li>Building windows with lights turning on/off.</li>
<li>Sun and Moon with day/night cycle affecting lighting and sky.</li>
</ul>
<p><strong>Conceptual Integration Points:</strong> (As before, imagine these influencing the dynamics)</p>
<ul>
<li><strong>AI Agents:</strong> Could control traffic flow, pedestrian density, "power grid" for window lights, or trigger city-wide events based on (simulated) external data.</li>
<li><strong>Wasm/Fractals:</strong> Could define more organic city growth, traffic patterns, or even complex behaviors for the simulated entities.</li>
</ul>
<p><em>Use mouse to orbit, scroll to zoom, right-click to pan.</em></p>
</div>
<canvas id="cityCanvas"></canvas>
<script type="importmap">
{
"imports": {
"three": "https://cdn.jsdelivr.net/npm/three@0.164.1/build/three.module.js",
"three/addons/": "https://cdn.jsdelivr.net/npm/three@0.164.1/examples/jsm/"
}
}
</script>
<script type="module">
import * as THREE from 'three';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
let scene, camera, renderer, controls;
const buildings = [];
const vehicles = [];
const pedestrians = [];
const birds = [];
const citySize = 20; // Grid size for the city
const buildingSpacing = 2.0; // Increased spacing for roads
const roadWidth = 0.5;
const buildingMaxHeight = 8;
const buildingMinHeight = 1;
let sunLight, moonLight, ambientLight;
const skyRadius = citySize * buildingSpacing * 1.5; // Radius for sun/moon path
const dayClearColor = new THREE.Color(0x87CEEB); // Sky blue
const nightClearColor = new THREE.Color(0x000020); // Deep navy
const dayFogColor = new THREE.Color(0x87CEEB);
const nightFogColor = new THREE.Color(0x000010);
// --- Core Three.js Setup ---
function init() {
const canvas = document.getElementById('cityCanvas');
renderer = new THREE.WebGLRenderer({ canvas: canvas, antialias: true });
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setPixelRatio(window.devicePixelRatio);
renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
renderer.toneMapping = THREE.ACESFilmicToneMapping;
renderer.toneMappingExposure = 0.8;
scene = new THREE.Scene();
// scene.background will be set dynamically
camera = new THREE.PerspectiveCamera(60, window.innerWidth / window.innerHeight, 0.1, skyRadius * 2.5);
camera.position.set(citySize * 0.7, citySize * 0.6, citySize * 0.7);
controls = new OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.dampingFactor = 0.05;
controls.screenSpacePanning = false;
controls.minDistance = 3;
controls.maxDistance = citySize * 2.5;
controls.maxPolarAngle = Math.PI / 2 - 0.01; // Prevent going too low
// --- Lighting ---
ambientLight = new THREE.AmbientLight(0xffffff, 0.1); // Start dim
scene.add(ambientLight);
sunLight = new THREE.DirectionalLight(0xffffee, 0); // Start with 0 intensity
sunLight.castShadow = true;
sunLight.shadow.mapSize.width = 2048;
sunLight.shadow.mapSize.height = 2048;
sunLight.shadow.camera.near = 0.5;
sunLight.shadow.camera.far = skyRadius * 0.8;
sunLight.shadow.camera.left = -citySize * 1.5;
sunLight.shadow.camera.right = citySize * 1.5;
sunLight.shadow.camera.top = citySize * 1.5;
sunLight.shadow.camera.bottom = -citySize * 1.5;
sunLight.shadow.bias = -0.0005; // Helps with shadow acne
scene.add(sunLight);
// const sunShadowHelper = new THREE.CameraHelper(sunLight.shadow.camera); // For debugging
// scene.add(sunShadowHelper);
moonLight = new THREE.DirectionalLight(0x7788cc, 0); // Start with 0 intensity
moonLight.castShadow = true; // Moon can cast shadows, but might be subtle/expensive
moonLight.shadow.mapSize.width = 1024; // Lower res for moon
moonLight.shadow.mapSize.height = 1024;
moonLight.shadow.camera.near = 0.5;
moonLight.shadow.camera.far = skyRadius * 0.8;
moonLight.shadow.bias = -0.0005;
scene.add(moonLight);
// --- Ground ---
const groundGeometry = new THREE.PlaneGeometry(citySize * buildingSpacing * 1.2, citySize * buildingSpacing * 1.2);
const groundMaterial = new THREE.MeshStandardMaterial({
color: 0x445544, // Earthy green/grey
roughness: 0.9,
metalness: 0.1
});
const ground = new THREE.Mesh(groundGeometry, groundMaterial);
ground.rotation.x = -Math.PI / 2;
ground.receiveShadow = true;
scene.add(ground);
// --- City, Entities ---
generateCity();
createVehicles(30); // Create some cars
createPedestrians(50); // Create some people
createBirds(20); // Create some birds
document.getElementById('loadingScreen').style.display = 'none';
window.addEventListener('resize', onWindowResize, false);
animate();
}
// --- Procedural City Generation with Windows ---
function generateCity() {
const buildingBaseGeometry = new THREE.BoxGeometry(1, 1, 1);
for (let i = 0; i < citySize; i++) {
for (let j = 0; j < citySize; j++) {
if (Math.random() > 0.25) { // 75% chance of building
const buildingHeight = THREE.MathUtils.randFloat(buildingMinHeight, buildingMaxHeight);
const buildingWidth = THREE.MathUtils.randFloat(0.7, buildingSpacing - roadWidth * 0.8);
const buildingDepth = THREE.MathUtils.randFloat(0.7, buildingSpacing - roadWidth * 0.8);
const buildingMaterial = new THREE.MeshStandardMaterial({
color: new THREE.Color().setHSL(Math.random() * 0.1 + 0.55, 0.1, Math.random() * 0.2 + 0.3), // Greys, browns, dark blues
roughness: THREE.MathUtils.randFloat(0.6, 0.9),
metalness: THREE.MathUtils.randFloat(0.0, 0.2),
});
const building = new THREE.Mesh(buildingBaseGeometry, buildingMaterial);
building.scale.set(buildingWidth, buildingHeight, buildingDepth);
building.position.set(
(i - citySize / 2 + 0.5) * buildingSpacing,
buildingHeight / 2,
(j - citySize / 2 + 0.5) * buildingSpacing
);
building.castShadow = true;
building.receiveShadow = true;
scene.add(building);
building.userData.windows = [];
// Add Windows
const windowSize = 0.15;
const windowSpacing = 0.25;
const windowDepthOffset = 0.01; // Slightly in front of facade
// Facade X ( iterating Z for height, X for width on this face)
for (let bh = windowSpacing; bh < buildingHeight - windowSpacing; bh += windowSpacing * 2) {
for (let bw = -buildingWidth / 2 + windowSpacing; bw < buildingWidth / 2 - windowSpacing / 2; bw += windowSpacing * 1.5) {
if (Math.random() < 0.8) { // Chance to have a window
const windowMat = new THREE.MeshStandardMaterial({
color: 0x111122, // Dark window
emissive: 0x000000,
emissiveIntensity: 0,
transparent: true,
opacity: 0.7
});
const windowGeo = new THREE.PlaneGeometry(windowSize, windowSize);
const win = new THREE.Mesh(windowGeo, windowMat);
win.position.set(bw / buildingWidth, (bh - buildingHeight/2) / buildingHeight , 0.5 + windowDepthOffset/buildingDepth); // Normalized local coords
building.add(win); // Add to building so it scales/moves with it
building.userData.windows.push(win);
}
}
}
// Facade Z (iterating Z for height, Z for width on this face)
for (let bh = windowSpacing; bh < buildingHeight - windowSpacing; bh += windowSpacing * 2) {
for (let bd = -buildingDepth / 2 + windowSpacing; bd < buildingDepth / 2 - windowSpacing / 2; bd += windowSpacing * 1.5) {
if (Math.random() < 0.8) {
const windowMat = new THREE.MeshStandardMaterial({
color: 0x111122, emissive: 0x000000, emissiveIntensity: 0, transparent: true, opacity: 0.7
});
const windowGeo = new THREE.PlaneGeometry(windowSize, windowSize);
const win = new THREE.Mesh(windowGeo, windowMat);
win.position.set(0.5 + windowDepthOffset/buildingWidth, (bh - buildingHeight/2) / buildingHeight, bd / buildingDepth);
win.rotation.y = Math.PI / 2;
building.add(win);
building.userData.windows.push(win);
}
}
}
// Opposite facades (could be more efficient, but ok for demo)
for (let bh = windowSpacing; bh < buildingHeight - windowSpacing; bh += windowSpacing * 2) {
for (let bw = -buildingWidth / 2 + windowSpacing; bw < buildingWidth / 2 - windowSpacing / 2; bw += windowSpacing * 1.5) {
if (Math.random() < 0.8) {
const windowMat = new THREE.MeshStandardMaterial({
color: 0x111122, emissive: 0x000000, emissiveIntensity: 0, transparent: true, opacity: 0.7
});
const windowGeo = new THREE.PlaneGeometry(windowSize, windowSize);
const win = new THREE.Mesh(windowGeo, windowMat);
win.position.set(bw / buildingWidth, (bh - buildingHeight/2) / buildingHeight , -0.5 - windowDepthOffset/buildingDepth);
win.rotation.y = Math.PI;
building.add(win);
building.userData.windows.push(win);
}
}
}
for (let bh = windowSpacing; bh < buildingHeight - windowSpacing; bh += windowSpacing * 2) {
for (let bd = -buildingDepth / 2 + windowSpacing; bd < buildingDepth / 2 - windowSpacing / 2; bd += windowSpacing * 1.5) {
if (Math.random() < 0.8) {
const windowMat = new THREE.MeshStandardMaterial({
color: 0x111122, emissive: 0x000000, emissiveIntensity: 0, transparent: true, opacity: 0.7
});
const windowGeo = new THREE.PlaneGeometry(windowSize, windowSize);
const win = new THREE.Mesh(windowGeo, windowMat);
win.position.set(-0.5 - windowDepthOffset/buildingWidth, (bh - buildingHeight/2) / buildingHeight, bd / buildingDepth);
win.rotation.y = -Math.PI / 2;
building.add(win);
building.userData.windows.push(win);
}
}
}
buildings.push(building);
}
}
}
}
// --- Create Moving Entities ---
function createVehicles(count) {
const carGeo = new THREE.BoxGeometry(0.6, 0.25, 0.3);
const carMat = new THREE.MeshStandardMaterial({ color: 0xaa0000, roughness: 0.3, metalness: 0.5 });
for (let i = 0; i < count; i++) {
const vehicle = new THREE.Mesh(carGeo, carMat.clone());
vehicle.material.color.setHSL(Math.random(), 0.7, 0.5); // Random car colors
vehicle.castShadow = true;
// Position on a "road"
const onXAxis = Math.random() > 0.5;
const roadLine = Math.floor(Math.random() * citySize) - citySize / 2 + 0.5;
vehicle.position.set(
onXAxis ? (Math.random() - 0.5) * citySize * buildingSpacing : roadLine * buildingSpacing + (Math.random() > 0.5 ? roadWidth : -roadWidth),
0.125,
onXAxis ? roadLine * buildingSpacing + (Math.random() > 0.5 ? roadWidth : -roadWidth) : (Math.random() - 0.5) * citySize * buildingSpacing
);
vehicle.userData.speed = THREE.MathUtils.randFloat(0.02, 0.05) * (Math.random() > 0.5 ? 1 : -1);
vehicle.userData.axis = onXAxis ? 'x' : 'z';
if ((vehicle.userData.axis === 'x' && vehicle.userData.speed < 0) || (vehicle.userData.axis === 'z' && vehicle.userData.speed > 0)) {
vehicle.rotation.y = Math.PI / 2;
}
scene.add(vehicle);
vehicles.push(vehicle);
}
}
function createPedestrians(count) {
const pedGeo = new THREE.CylinderGeometry(0.05, 0.05, 0.3, 8);
const pedMat = new THREE.MeshStandardMaterial({ color: 0x00aa00, roughness: 0.8, metalness: 0.1 });
for (let i = 0; i < count; i++) {
const pedestrian = new THREE.Mesh(pedGeo, pedMat.clone());
pedestrian.material.color.setHSL(Math.random(), 0.6, 0.6);
pedestrian.castShadow = true;
// Position on a "sidewalk"
const buildingIndex = Math.floor(Math.random() * buildings.length);
const targetBuilding = buildings[buildingIndex];
if (!targetBuilding) continue;
const side = Math.floor(Math.random() * 4);
let offsetX = 0, offsetZ = 0;
const sidewalkOffset = targetBuilding.scale.x / 2 + 0.15; // Assuming square base for simplicity
if (side === 0) { offsetZ = sidewalkOffset; offsetX = (Math.random()-0.5) * targetBuilding.scale.x; } // Front
else if (side === 1) { offsetZ = -sidewalkOffset; offsetX = (Math.random()-0.5) * targetBuilding.scale.x; } // Back
else if (side === 2) { offsetX = sidewalkOffset; offsetZ = (Math.random()-0.5) * targetBuilding.scale.z; } // Right
else { offsetX = -sidewalkOffset; offsetZ = (Math.random()-0.5) * targetBuilding.scale.z; } // Left
pedestrian.position.set(
targetBuilding.position.x + offsetX,
0.15,
targetBuilding.position.z + offsetZ
);
pedestrian.userData.speed = THREE.MathUtils.randFloat(0.005, 0.01);
pedestrian.userData.direction = new THREE.Vector3(Math.random()-0.5, 0, Math.random()-0.5).normalize();
scene.add(pedestrian);
pedestrians.push(pedestrian);
}
}
function createBirds(count) {
const birdGeo = new THREE.SphereGeometry(0.1, 8, 6); // Simpler bird
const birdMat = new THREE.MeshStandardMaterial({ color: 0x555555, roughness: 0.5 });
for (let i = 0; i < count; i++) {
const bird = new THREE.Mesh(birdGeo, birdMat.clone());
bird.material.color.setHex(Math.random() * 0xffffff);
bird.position.set(
(Math.random() - 0.5) * citySize * buildingSpacing * 0.8,
THREE.MathUtils.randFloat(buildingMaxHeight + 2, buildingMaxHeight + 10),
(Math.random() - 0.5) * citySize * buildingSpacing * 0.8
);
bird.userData.speed = THREE.MathUtils.randFloat(0.02, 0.06);
bird.userData.phase = Math.random() * Math.PI * 2; // For circular/wave motion
bird.userData.amplitudeY = THREE.MathUtils.randFloat(0.5, 2);
bird.userData.radius = THREE.MathUtils.randFloat(citySize * 0.2, citySize * 0.5);
bird.userData.angle = Math.random() * Math.PI * 2;
bird.userData.angleSpeed = THREE.MathUtils.randFloat(0.001, 0.005) * (Math.random() > 0.5 ? 1: -1);
scene.add(bird);
birds.push(bird);
}
}
// --- Animation Loop ---
let lastWindowUpdateTime = 0;
const windowUpdateInterval = 200; // milliseconds
function animate(time) { // time is passed by requestAnimationFrame
requestAnimationFrame(animate);
const currentTime = time || 0; // Ensure time is defined
const delta = currentTime - (lastWindowUpdateTime || 0);
const timeOfDay = (currentTime * 0.00002) % 1; // 0 to 1, representing 24 hours
const sunAngle = timeOfDay * Math.PI * 2; // Full circle
// Update Sun
sunLight.position.set(
Math.cos(sunAngle) * skyRadius,
Math.sin(sunAngle) * skyRadius * 0.7, // Lower peak for more visible arc
Math.sin(sunAngle - Math.PI / 4) * skyRadius // Offset Z for non-linear path
);
sunLight.intensity = Math.max(0, Math.sin(sunAngle)) * 1.8; // Brighter sun
sunLight.visible = sunLight.intensity > 0.01;
// Update Moon (opposite side of sun)
const moonAngle = sunAngle + Math.PI;
moonLight.position.set(
Math.cos(moonAngle) * skyRadius * 0.9, // Slightly different orbit
Math.sin(moonAngle) * skyRadius * 0.6,
Math.sin(moonAngle - Math.PI / 4) * skyRadius * 0.9
);
moonLight.intensity = Math.max(0, Math.sin(moonAngle)) * 0.4;
moonLight.visible = moonLight.intensity > 0.01;
// Update Ambient Light & Fog & Background
const dayFactor = Math.pow(Math.max(0, Math.sin(sunAngle)), 0.7); // Emphasize day/night difference
ambientLight.intensity = dayFactor * 0.5 + 0.1; // Brighter during day, min at night
scene.background = nightClearColor.clone().lerp(dayClearColor, dayFactor);
if (scene.fog) {
scene.fog.color = nightFogColor.clone().lerp(dayFogColor, dayFactor);
scene.fog.near = skyRadius * 0.2 * (1 - dayFactor * 0.5); // Fog closer at night
scene.fog.far = skyRadius * (1 - dayFactor * 0.3);
} else { // Initialize fog if not present
scene.fog = new THREE.Fog(scene.background, skyRadius * 0.2, skyRadius);
}
// Animate Windows (less frequent updates)
if (delta > windowUpdateInterval) {
lastWindowUpdateTime = currentTime;
buildings.forEach(building => {
building.userData.windows.forEach(win => {
if (Math.random() < 0.05) { // Small chance to toggle a window
const isNight = dayFactor < 0.3;
const lightOnProb = isNight ? 0.6 : 0.15; // Higher chance of lights on at night
if (Math.random() < lightOnProb) {
win.material.emissive.setHex(0xffffaa);
win.material.emissiveIntensity = THREE.MathUtils.randFloat(0.5, 1.2);
win.material.opacity = 0.9;
} else {
win.material.emissive.setHex(0x000000);
win.material.emissiveIntensity = 0;
win.material.opacity = 0.6;
}
}
});
});
}
// Animate Vehicles
const cityBoundary = citySize * buildingSpacing / 2;
vehicles.forEach(v => {
if (v.userData.axis === 'x') {
v.position.x += v.userData.speed;
if (v.position.x > cityBoundary && v.userData.speed > 0) v.position.x = -cityBoundary;
if (v.position.x < -cityBoundary && v.userData.speed < 0) v.position.x = cityBoundary;
} else {
v.position.z += v.userData.speed;
if (v.position.z > cityBoundary && v.userData.speed > 0) v.position.z = -cityBoundary;
if (v.position.z < -cityBoundary && v.userData.speed < 0) v.position.z = cityBoundary;
}
});
// Animate Pedestrians (simple wander)
pedestrians.forEach(p => {
p.position.addScaledVector(p.userData.direction, p.userData.speed);
if (Math.random() < 0.01) { // Occasionally change direction
p.userData.direction.set(Math.random()-0.5, 0, Math.random()-0.5).normalize();
}
// Basic boundary containment (crude)
p.position.x = THREE.MathUtils.clamp(p.position.x, -cityBoundary, cityBoundary);
p.position.z = THREE.MathUtils.clamp(p.position.z, -cityBoundary, cityBoundary);
});
// Animate Birds
birds.forEach(b => {
b.userData.angle += b.userData.angleSpeed;
b.position.x = Math.cos(b.userData.angle) * b.userData.radius;
b.position.z = Math.sin(b.userData.angle) * b.userData.radius;
b.position.y = (buildingMaxHeight + 5) + Math.sin(currentTime * 0.001 * b.userData.speed + b.userData.phase) * b.userData.amplitudeY;
});
controls.update();
renderer.render(scene, camera);
}
// --- Window Resize Handler ---
function onWindowResize() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
}
// --- Start ---
init();
</script>
</body>
</html>
|