File size: 30,247 Bytes
feb936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c13494
feb936d
 
 
 
 
 
 
 
0c13494
feb936d
 
 
 
 
 
 
 
 
0c13494
feb936d
0c13494
feb936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c13494
feb936d
 
 
 
 
 
 
 
 
 
0c13494
feb936d
 
 
 
 
 
 
 
 
 
 
0c13494
 
 
 
 
 
 
 
 
feb936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c13494
 
feb936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c13494
feb936d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
import asyncio
import os
import json
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack
from datetime import datetime
import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from mcp.client.sse import sse_client
from anthropic import Anthropic
from anthropic._exceptions import OverloadedError
from dotenv import load_dotenv
from openai import OpenAI
import openai
from openai.types.responses import (
    ResponseTextDeltaEvent,
    ResponseContentPartAddedEvent,
    ResponseContentPartDoneEvent,
    ResponseTextDoneEvent,
    ResponseMcpCallInProgressEvent,
    ResponseAudioDeltaEvent,
    ResponseMcpCallCompletedEvent,
    ResponseOutputItemDoneEvent,
    ResponseOutputItemAddedEvent,
    ResponseCompletedEvent,
)
import ast

load_dotenv()

# LLM_PROVIDER = "anthropic"
LLM_PROVIDER = "openai"

SYSTEM_PROMPT = f"""You are a helpful assistant. Today is {datetime.now().strftime("%Y-%m-%d")}.

You **do not** have prior knowledge of the World Development Indicators (WDI) data. Instead, you must rely entirely on the tools available to you to answer the user's questions.

Detect the language of the user's query and use that language for your response, unless the user specifies otherwise.

When responding you must always plan the steps and enumerate all the tools that you plan to use to answer the user's query.

### Your Instructions:

1. **Tool Use Only**:
   - You must not provide any answers based on prior knowledge or assumptions.
   - You must **not** fabricate data or simulate the behavior of the `get_wdi_data` tool.
   - You cannot use the `get_wdi_data` tool without using the `search_relevant_indicators` tool first.
   - If the user requests WDI data, you **MUST ALWAYS** first call the `search_relevant_indicators` tool to see if there's any relevant data.
   - If relevant data exists, call the `get_wdi_data` tool to get the data.

2. **Tool Invocation**:
   - Use any relevant tools provided to you to answer the user's question.
   - You may call multiple tools if needed, and you should do so in a logical sequence to minimize unnecessary user interaction.
   - Do not hesitate to invoke tools as soon as they are relevant.

3. **Limitations**:
   - If a user request cannot be fulfilled using the tools available, respond by clearly stating that you do not have access to that information.

4. **Ethical Guidelines**:
   - Do not make or endorse statements based on stereotypes, bias, or assumptions.
   - Ensure all claims and explanations are grounded in the data or factual evidence retrieved via tools.
   - Politely refuse to respond to requests that involve stereotypes or unfounded generalizations.

5. **Communication Style**:
   - Present the data in clear, user-friendly language.
   - You may summarize or explain the data retrieved, but do **not** elaborate based on outside or implicit knowledge.
   - You may describe the data in a way that is easy to understand but you MUST NOT elaborate based on external knowledge.
   - Provide summary of the answer in the last step describing some observations and insights solely based on the data.

6. **Presentation**:
   - Present the data in a way that is easy to understand.
   - Summarize the data in a table format with clear column names and values.
   - If the data is not available, respond by clearly stating that you do not have access to that information.

7. **Tool Use**:
   - Fetch each indicator data using independent tool calls.
   - Provide some brief explanation between tool calls.

Stay strictly within these boundaries while maintaining a helpful and respectful tone."""


LLM_MODEL = "claude-3-5-haiku-20241022"
OPENAI_MODEL = "gpt-4.1"
# OPENAI_MODEL = "gpt-4.1-mini"
# OPENAI_MODEL = "gpt-4.1-nano"
# What is the military spending of bangladesh in 2014?
# When a tool is needed for any step, ensure to add the token `TOOL_USE`.


loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)


class MCPClientWrapper:
    def __init__(self):
        self.session = None
        self.exit_stack = None
        self.anthropic = Anthropic()
        self.openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        self.tools = []

    async def connect(self, server_path_or_url: str) -> str:
        try:
            # If there's an existing session, close it
            if self.exit_stack:
                return "Already connected to an MCP server. Please disconnect first."
                # await self.exit_stack.aclose()

            self.exit_stack = AsyncExitStack()

            if server_path_or_url.endswith(".py"):
                command = "python"

                server_params = StdioServerParameters(
                    command=command,
                    args=[server_path_or_url],
                    env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"},
                )

                print(
                    f"Starting MCP server with command: {command} {server_path_or_url}"
                )
                # Launch MCP subprocess and bind streams on the current running loop
                stdio_transport = await self.exit_stack.enter_async_context(
                    stdio_client(server_params)
                )
                self.stdio, self.write = stdio_transport
            else:
                print(f"Connecting to MCP server at: {server_path_or_url}")
                sse_transport = await self.exit_stack.enter_async_context(
                    sse_client(
                        server_path_or_url,
                        headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
                    )
                )
                self.stdio, self.write = sse_transport

            print("Creating MCP client session...")
            # Create ClientSession on this same loop
            self.session = await self.exit_stack.enter_async_context(
                ClientSession(self.stdio, self.write)
            )
            await self.session.initialize()
            print("MCP session initialized successfully")

            response = await self.session.list_tools()
            self.tools = [
                {
                    "name": tool.name,
                    "description": tool.description,
                    "input_schema": tool.inputSchema,
                }
                for tool in response.tools
            ]

            print("Available tools:", self.tools)
            tool_names = [tool["name"] for tool in self.tools]
            return f"Connected to MCP server. Available tools: {', '.join(tool_names)}"
        except Exception as e:
            error_msg = f"Failed to connect to MCP server: {str(e)}"
            print(error_msg)
            # Clean up on error
            if self.exit_stack:
                await self.exit_stack.aclose()
                self.exit_stack = None
            self.session = None
            return error_msg

    async def disconnect(self):
        if self.exit_stack:
            print("Disconnecting from MCP server...")
            await self.exit_stack.aclose()
            self.exit_stack = None
            self.session = None

    async def process_message(
        self,
        message: str,
        history: List[Union[Dict[str, Any], ChatMessage]],
        previous_response_id: str = None,
    ):
        print("previous_response_id", previous_response_id)
        if not self.session and LLM_PROVIDER == "anthropic":
            messages = history + [
                {"role": "user", "content": message},
                {
                    "role": "assistant",
                    "content": "Please connect to an MCP server first by reloading the page.",
                },
            ]
            yield messages, gr.Textbox(value=""), previous_response_id
        else:
            messages = history + [
                {"role": "user", "content": message},
                {
                    "role": "assistant",
                    "content": "Ok, let me think about your query 🤔...",
                },
            ]

            yield messages, gr.Textbox(value=""), previous_response_id
            # simulate thinking with asyncio.sleep
            await asyncio.sleep(0.2)
            messages.pop(-1)

            is_delta = False
            async for partial in self._process_query(
                message, history, previous_response_id
            ):
                if partial[-1].get("delta"):
                    if not is_delta:
                        is_delta = True
                        messages.append(
                            {
                                "role": "assistant",
                                "content": "",
                            }
                        )
                    messages[-1]["content"] += partial[-1]["delta"]
                    if partial[-1].get("status") == "done":
                        await asyncio.sleep(0.05)
                else:
                    is_delta = False
                    if partial[-1].get("response_id"):
                        previous_response_id = partial[-1]["response_id"]
                        yield (
                            messages,
                            gr.Textbox(value=""),
                            previous_response_id,
                        )
                        await asyncio.sleep(0.01)
                        continue
                    else:
                        messages.extend(partial)
                    print(partial)

                yield (
                    messages,
                    gr.Textbox(value=""),
                    previous_response_id,
                )
                await asyncio.sleep(0.01)

                if (
                    messages[-1]["role"] == "assistant"
                    and messages[-1]["content"]
                    == "The LLM API is overloaded now, try again later..."
                ):
                    break

        with open("messages.log.jsonl", "a+") as fl:
            fl.write(
                json.dumps(
                    dict(
                        time=f"{datetime.now()}",
                        messages=messages,
                        previous_response_id=previous_response_id,
                    )
                )
            )

    async def _process_query_openai(
        self,
        message: str,
        history: List[Union[Dict[str, Any], ChatMessage]],
        previous_response_id: str = None,
    ):
        response = self.openai.responses.create(
            model=OPENAI_MODEL,
            tools=[
                {
                    "type": "mcp",
                    "server_label": "wdi_mcp",
                    "server_url": "https://avsolatorio-test-data-mcp-server.hf.space/gradio_api/mcp/sse",
                    "require_approval": "never",
                    "headers": {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
                    # "server_token": userdata.get('MCP_HF_TOKEN'),
                },
            ],
            # input="What transport protocols are supported in the 2025-03-26 version of the MCP spec?",
            instructions=SYSTEM_PROMPT,
            # input="What is the gdp of india in 2020?",
            input=message,
            parallel_tool_calls=False,
            stream=True,
            max_output_tokens=32768,
            temperature=0,
            previous_response_id=previous_response_id.strip()
            if previous_response_id
            else None,
            store=True,  # Store the response in the OpenAIlogs
        )

        is_tool_call = False
        tool_name = None
        tool_args = None
        for event in response:
            if isinstance(event, ResponseCompletedEvent):
                yield [
                    {
                        "response_id": event.response.id,
                    }
                ]
            elif (
                isinstance(event, ResponseOutputItemAddedEvent)
                and event.item.type == "mcp_call"
            ):
                is_tool_call = True
                tool_name = event.item.name
            # if isinstance(event, ResponseMcpCallInProgressEvent):
            #     is_tool_call = True
            #     yield [
            #         {
            #             "role": "assistant",
            #             "content": "I'll use the tool to help answer your question.",
            #         }
            #     ]
            if is_tool_call:
                if (
                    isinstance(event, ResponseAudioDeltaEvent)
                    and event.type == "response.mcp_call_arguments.done"
                ):
                    tool_args = event.arguments

                    try:
                        tool_args = json.dumps(
                            json.loads(tool_args), ensure_ascii=True, indent=2
                        )
                    except:
                        pass

                    yield [
                        {
                            "role": "assistant",
                            "content": f"I'll use the {tool_name} tool to help answer your question.",
                            "metadata": {
                                "title": f"Using tool: {tool_name.replace('avsolatorio_test_data_mcp_server', '')}",
                                "log": f"Parameters: {tool_args}",
                                # "status": "pending",
                                "status": "done",
                                "id": f"tool_call_{tool_name}",
                            },
                        }
                    ]

                    yield [
                        {
                            "role": "assistant",
                            "content": "```json\n" + tool_args + "\n```",
                            "metadata": {
                                "parent_id": f"tool_call_{tool_name}",
                                "id": f"params_{tool_name}",
                                "title": "Tool Parameters",
                            },
                        }
                    ]

                elif isinstance(event, ResponseOutputItemDoneEvent):
                    if event.item.type == "mcp_call":
                        yield [
                            {
                                "role": "assistant",
                                "content": "Here are the results from the tool:",
                                "metadata": {
                                    "title": f"Tool Result for {tool_name.replace('avsolatorio_test_data_mcp_server', '')}",
                                    "status": "done",
                                    "id": f"result_{tool_name}",
                                },
                            }
                        ]

                        result_content = event.item.output
                        if result_content.startswith("root="):
                            result_content = result_content[5:]
                            try:
                                result_content = ast.literal_eval(result_content)
                                result_content = json.dumps(result_content, indent=2)
                            except:
                                pass

                        yield [
                            {
                                "role": "assistant",
                                "content": "```\n" + result_content + "\n```",
                                "metadata": {
                                    "parent_id": f"result_{tool_name}",
                                    "id": f"raw_result_{tool_name}",
                                    "title": "Raw Output",
                                },
                            }
                        ]
                        is_tool_call = False
                        tool_name = None
                        tool_args = None

            elif (
                isinstance(event, ResponseContentPartDoneEvent)
                and event.type == "response.content_part.done"
            ):
                yield [
                    {
                        "role": "assistant",
                        "content": "",
                        "delta": "",
                        "status": "done",
                    }
                ]
            elif isinstance(event, ResponseTextDeltaEvent):
                yield [{"role": "assistant", "content": None, "delta": event.delta}]

    async def _process_query_anthropic(
        self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]
    ):
        claude_messages = []
        for msg in history:
            if isinstance(msg, ChatMessage):
                role, content = msg.role, msg.content
            else:
                role, content = msg.get("role"), msg.get("content")

            if role in ["user", "assistant", "system"]:
                claude_messages.append({"role": role, "content": content})

        claude_messages.append({"role": "user", "content": message})

        try:
            response = self.anthropic.messages.create(
                # model="claude-3-5-sonnet-20241022",
                model=LLM_MODEL,
                system=SYSTEM_PROMPT,
                max_tokens=1000,
                messages=claude_messages,
                tools=self.tools,
            )
        except OverloadedError:
            yield [
                {
                    "role": "assistant",
                    "content": "The LLM API is overloaded now, try again later...",
                }
            ]
            # TODO: Add a retry mechanism

        result_messages = []
        partial_messages = []

        print(response.content)
        contents = response.content

        MAX_CALLS = 10
        auto_calls = 0

        while len(contents) > 0 and auto_calls < MAX_CALLS:
            content = contents.pop(0)

            if content.type == "text":
                result_messages.append({"role": "assistant", "content": content.text})
                claude_messages.append({"role": "assistant", "content": content.text})
                partial_messages.append(result_messages[-1])
                yield [result_messages[-1]]
                partial_messages = []

            elif content.type == "tool_use":
                tool_id = content.id
                tool_name = content.name
                tool_args = content.input

                result_messages.append(
                    {
                        "role": "assistant",
                        "content": f"I'll use the {tool_name} tool to help answer your question.",
                        "metadata": {
                            "title": f"Using tool: {tool_name.replace('avsolatorio_test_data_mcp_server', '')}",
                            "log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
                            # "status": "pending",
                            "status": "done",
                            "id": f"tool_call_{tool_name}",
                        },
                    }
                )
                partial_messages.append(result_messages[-1])
                yield [result_messages[-1]]

                result_messages.append(
                    {
                        "role": "assistant",
                        "content": "```json\n"
                        + json.dumps(tool_args, indent=2, ensure_ascii=True)
                        + "\n```",
                        "metadata": {
                            "parent_id": f"tool_call_{tool_name}",
                            "id": f"params_{tool_name}",
                            "title": "Tool Parameters",
                        },
                    }
                )
                partial_messages.append(result_messages[-1])
                yield [result_messages[-1]]

                print(f"Calling tool: {tool_name} with args: {tool_args}")
                try:
                    # Check if session is still valid
                    if not self.session or not self.stdio or not self.write:
                        raise Exception(
                            "MCP session is not connected or has been closed"
                        )

                    result = await self.session.call_tool(tool_name, tool_args)
                except Exception as e:
                    error_msg = f"Error calling tool {tool_name}: {str(e)}"
                    print(error_msg)
                    result_messages.append(
                        {
                            "role": "assistant",
                            "content": f"Sorry, I encountered an error while calling the tool: {error_msg}. Please try again or reload the page.",
                            "metadata": {
                                "title": f"Tool Error for {tool_name.replace('avsolatorio_test_data_mcp_server', '')}",
                                "status": "done",
                                "id": f"error_{tool_name}",
                            },
                        }
                    )
                    partial_messages.append(result_messages[-1])
                    yield [result_messages[-1]]
                    partial_messages = []
                    continue

                if result_messages and "metadata" in result_messages[-2]:
                    result_messages[-2]["metadata"]["status"] = "done"

                result_messages.append(
                    {
                        "role": "assistant",
                        "content": "Here are the results from the tool:",
                        "metadata": {
                            "title": f"Tool Result for {tool_name.replace('avsolatorio_test_data_mcp_server', '')}",
                            "status": "done",
                            "id": f"result_{tool_name}",
                        },
                    }
                )
                partial_messages.append(result_messages[-1])
                yield [result_messages[-1]]
                partial_messages = []

                result_content = result.content
                print(result_content)
                if isinstance(result_content, list):
                    result_content = [r.model_dump() for r in result_content]

                    for r in result_content:
                        # Remove annotations field from each item if it exists
                        r.pop("annotations", None)
                        try:
                            r["text"] = json.loads(r["text"])
                        except:
                            pass

                    print("result_content", result_content)

                result_messages.append(
                    {
                        "role": "assistant",
                        "content": "```\n"
                        + json.dumps(result_content, indent=2)
                        + "\n```",
                        "metadata": {
                            "parent_id": f"result_{tool_name}",
                            "id": f"raw_result_{tool_name}",
                            "title": "Raw Output",
                        },
                    }
                )
                partial_messages.append(result_messages[-1])
                yield [result_messages[-1]]
                partial_messages = []

                claude_messages.append(
                    {"role": "assistant", "content": [content.model_dump()]}
                )
                claude_messages.append(
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "tool_result",
                                "tool_use_id": tool_id,
                                "content": json.dumps(result_content, indent=2),
                            }
                        ],
                    }
                )

                try:
                    next_response = self.anthropic.messages.create(
                        model=LLM_MODEL,
                        system=SYSTEM_PROMPT,
                        max_tokens=1000,
                        messages=claude_messages,
                        tools=self.tools,
                    )
                    auto_calls += 1
                except OverloadedError:
                    yield [
                        {
                            "role": "assistant",
                            "content": "The LLM API is overloaded now, try again later...",
                        }
                    ]

                print("next_response", next_response.content)

                contents.extend(next_response.content)

    async def _process_query(
        self,
        message: str,
        history: List[Union[Dict[Any, Any], ChatMessage]],
        previous_response_id: str = None,
    ):
        if LLM_PROVIDER == "anthropic":
            async for partial in self._process_query_anthropic(message, history):
                yield partial
        elif LLM_PROVIDER == "openai":
            try:
                async for partial in self._process_query_openai(
                    message, history, previous_response_id
                ):
                    yield partial
            except openai.APIError as e:
                print(e)
                yield [
                    {
                        "role": "assistant",
                        "content": "The LLM encountered an error. Please try again or reload the page.",
                    }
                ]
            except Exception as e:
                print(e)
                yield [
                    {
                        "role": "assistant",
                        "content": f"Sorry, I encountered an unexpected error: `{e}`. Please try again or reload the page.",
                    }
                ]


def gradio_interface(
    server_path_or_url: str = "https://avsolatorio-test-data-mcp-server.hf.space/gradio_api/mcp/sse",
):
    # server_path_or_url = "https://avsolatorio-test-data-mcp-server.hf.space/gradio_api/mcp/sse"
    # server_path_or_url = "wdi_mcp_server.py"

    client = MCPClientWrapper()
    custom_css = """
    .gradio-container {
        background-color: #fff !important;
    }
    .message-row.panel.bot-row {
        background-color: #fff !important;
    }
    .message-row.panel.user-row {
        background-color: #fff !important;
    }
    .user {
        background-color: #f1f6ff !important;
    }
    .bot {
        background-color: #fff !important;
    }
    .role {
        margin-left: 10px !important;
    }
    footer{display:none !important}
    """

    # Disable auto-dark mode by setting theme to None
    with gr.Blocks(title="WDI MCP Client", css=custom_css, theme=None) as demo:
        try:
            gr.Markdown("# Data360 Chat [Prototype]")
            # gr.Markdown("Connect to the WDI MCP server and chat with the assistant")

            with gr.Accordion(
                "Connect to the WDI MCP server and chat with the assistant",
                open=False,
                visible=server_path_or_url.endswith(".py"),
            ):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=4):
                        server_path = gr.Textbox(
                            label="Server Script Path",
                            placeholder="Enter path to server script (e.g., wdi_mcp_server.py)",
                            value=server_path_or_url,
                        )
                    with gr.Column(scale=1):
                        connect_btn = gr.Button("Connect")

                status = gr.Textbox(label="Connection Status", interactive=False)

            chatbot = gr.Chatbot(
                value=[],
                height="81vh",
                type="messages",
                show_copy_button=False,
                avatar_images=("img/small-user.png", "img/small-robot.png"),
                autoscroll=True,
                layout="panel",
                placeholder="Ask development data questions!",
            )
            previous_response_id = gr.State(None)

            with gr.Row(equal_height=True):
                msg = gr.Textbox(
                    label=None,
                    placeholder="Ask about what indicators are available for a specific topic (e.g., What's the definition of GDP?)",
                    scale=4,
                    show_label=False,
                )
                # clear_btn = gr.Button("Clear Chat", scale=1)

            # connect_btn.click(client.connect, inputs=server_path, outputs=status)
            # Automatically call client.connect(...) as soon as the interface loads
            if LLM_PROVIDER == "anthropic":
                demo.load(
                    fn=client.connect,
                    inputs=server_path,
                    outputs=status,
                    show_progress="full",
                )

            msg.submit(
                client.process_message,
                [msg, chatbot, previous_response_id],
                [chatbot, msg, previous_response_id],
                concurrency_limit=10,
            )
            # clear_btn.click(lambda: [], None, chatbot)

        except KeyboardInterrupt:
            if LLM_PROVIDER == "anthropic":
                print("Keyboard interrupt received. Disconnecting from MCP server...")
                asyncio.run(client.disconnect())
            raise KeyboardInterrupt
        # demo.unload(client.disconnect)

    return demo


if __name__ == "__main__":
    if not os.getenv("ANTHROPIC_API_KEY"):
        print(
            "Warning: ANTHROPIC_API_KEY not found in environment. Please set it in your .env file."
        )

    # interface = gradio_interface(server_path_or_url="wdi_mcp_server.py")
    interface = gradio_interface(
        server_path_or_url="https://avsolatorio-test-data-mcp-server.hf.space/gradio_api/mcp/sse"
    )
    interface.launch(
        server_name=os.getenv("SERVER_NAME", "127.0.0.1"),
        server_port=os.getenv("SERVER_PORT", 7860),
        debug=True,
    )