Use OpenAI service for chat and other fixes (#1)
Browse files- Duplicate code (8cd6fde1b446eedcc7fb93e454909012aa44a3e1)
- Update chat name (0c92aa0549c831e54b6ff5dda16f6a13b98dc5be)
- Bootstrap openai client (c8120990b49188805a48dd9b35cd250722ea3308)
- Use OpenAI API and improve interactivity (48042197b62244ebb703b1931d1f2778cda2694f)
- Update requirements (33f4b8c7893308049ff86b0da3a5376c31ae0268)
- Add history (8362096a1d78aa658553bfe16002ab76fa0b132a)
- Implement proper buffering of the output (e8809f1d039d7a252ca230042d59a3eb268a6482)
- Update language handling and store logs (0e2092543ad57d4d1863a677fec5a761e935a76e)
- Handle case where the data for the country is empty. (5eb37d7a551259ccf4d20781f703d981ab8cee8f)
- mcp_openai_client.py +758 -0
- mcp_remote_client.py +1 -1
- pyproject.toml +1 -0
- services.py +8 -0
- uv.lock +21 -0
mcp_openai_client.py
ADDED
@@ -0,0 +1,758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
from typing import List, Dict, Any, Union
|
5 |
+
from contextlib import AsyncExitStack
|
6 |
+
from datetime import datetime
|
7 |
+
import gradio as gr
|
8 |
+
from gradio.components.chatbot import ChatMessage
|
9 |
+
from mcp import ClientSession, StdioServerParameters
|
10 |
+
from mcp.client.stdio import stdio_client
|
11 |
+
from mcp.client.sse import sse_client
|
12 |
+
from anthropic import Anthropic
|
13 |
+
from anthropic._exceptions import OverloadedError
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
from openai import OpenAI
|
16 |
+
import openai
|
17 |
+
from openai.types.responses import (
|
18 |
+
ResponseTextDeltaEvent,
|
19 |
+
ResponseContentPartAddedEvent,
|
20 |
+
ResponseContentPartDoneEvent,
|
21 |
+
ResponseTextDoneEvent,
|
22 |
+
ResponseMcpCallInProgressEvent,
|
23 |
+
ResponseAudioDeltaEvent,
|
24 |
+
ResponseMcpCallCompletedEvent,
|
25 |
+
ResponseOutputItemDoneEvent,
|
26 |
+
ResponseOutputItemAddedEvent,
|
27 |
+
ResponseCompletedEvent,
|
28 |
+
)
|
29 |
+
import ast
|
30 |
+
|
31 |
+
load_dotenv()
|
32 |
+
|
33 |
+
# LLM_PROVIDER = "anthropic"
|
34 |
+
LLM_PROVIDER = "openai"
|
35 |
+
|
36 |
+
SYSTEM_PROMPT = f"""You are a helpful assistant. Today is {datetime.now().strftime("%Y-%m-%d")}.
|
37 |
+
|
38 |
+
You **do not** have prior knowledge of the World Development Indicators (WDI) data. Instead, you must rely entirely on the tools available to you to answer the user's questions.
|
39 |
+
|
40 |
+
Detect the language of the user's query and use that language for your response, unless the user specifies otherwise.
|
41 |
+
|
42 |
+
When responding you must always plan the steps and enumerate all the tools that you plan to use to answer the user's query.
|
43 |
+
|
44 |
+
### Your Instructions:
|
45 |
+
|
46 |
+
1. **Tool Use Only**:
|
47 |
+
- You must not provide any answers based on prior knowledge or assumptions.
|
48 |
+
- You must **not** fabricate data or simulate the behavior of the `get_wdi_data` tool.
|
49 |
+
- You cannot use the `get_wdi_data` tool without using the `search_relevant_indicators` tool first.
|
50 |
+
- If the user requests WDI data, you **MUST ALWAYS** first call the `search_relevant_indicators` tool to see if there's any relevant data.
|
51 |
+
- If relevant data exists, call the `get_wdi_data` tool to get the data.
|
52 |
+
|
53 |
+
2. **Tool Invocation**:
|
54 |
+
- Use any relevant tools provided to you to answer the user's question.
|
55 |
+
- You may call multiple tools if needed, and you should do so in a logical sequence to minimize unnecessary user interaction.
|
56 |
+
- Do not hesitate to invoke tools as soon as they are relevant.
|
57 |
+
|
58 |
+
3. **Limitations**:
|
59 |
+
- If a user request cannot be fulfilled using the tools available, respond by clearly stating that you do not have access to that information.
|
60 |
+
|
61 |
+
4. **Ethical Guidelines**:
|
62 |
+
- Do not make or endorse statements based on stereotypes, bias, or assumptions.
|
63 |
+
- Ensure all claims and explanations are grounded in the data or factual evidence retrieved via tools.
|
64 |
+
- Politely refuse to respond to requests that involve stereotypes or unfounded generalizations.
|
65 |
+
|
66 |
+
5. **Communication Style**:
|
67 |
+
- Present the data in clear, user-friendly language.
|
68 |
+
- You may summarize or explain the data retrieved, but do **not** elaborate based on outside or implicit knowledge.
|
69 |
+
- You may describe the data in a way that is easy to understand but you MUST NOT elaborate based on external knowledge.
|
70 |
+
- Provide summary of the answer in the last step describing some observations and insights solely based on the data.
|
71 |
+
|
72 |
+
6. **Presentation**:
|
73 |
+
- Present the data in a way that is easy to understand.
|
74 |
+
- Summarize the data in a table format with clear column names and values.
|
75 |
+
- If the data is not available, respond by clearly stating that you do not have access to that information.
|
76 |
+
|
77 |
+
7. **Tool Use**:
|
78 |
+
- Fetch each indicator data using independent tool calls.
|
79 |
+
- Provide some brief explanation between tool calls.
|
80 |
+
|
81 |
+
Stay strictly within these boundaries while maintaining a helpful and respectful tone."""
|
82 |
+
|
83 |
+
|
84 |
+
LLM_MODEL = "claude-3-5-haiku-20241022"
|
85 |
+
OPENAI_MODEL = "gpt-4.1"
|
86 |
+
# OPENAI_MODEL = "gpt-4.1-mini"
|
87 |
+
# OPENAI_MODEL = "gpt-4.1-nano"
|
88 |
+
# What is the military spending of bangladesh in 2014?
|
89 |
+
# When a tool is needed for any step, ensure to add the token `TOOL_USE`.
|
90 |
+
|
91 |
+
|
92 |
+
loop = asyncio.new_event_loop()
|
93 |
+
asyncio.set_event_loop(loop)
|
94 |
+
|
95 |
+
|
96 |
+
class MCPClientWrapper:
|
97 |
+
def __init__(self):
|
98 |
+
self.session = None
|
99 |
+
self.exit_stack = None
|
100 |
+
self.anthropic = Anthropic()
|
101 |
+
self.openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
102 |
+
self.tools = []
|
103 |
+
|
104 |
+
async def connect(self, server_path_or_url: str) -> str:
|
105 |
+
try:
|
106 |
+
# If there's an existing session, close it
|
107 |
+
if self.exit_stack:
|
108 |
+
return "Already connected to an MCP server. Please disconnect first."
|
109 |
+
# await self.exit_stack.aclose()
|
110 |
+
|
111 |
+
self.exit_stack = AsyncExitStack()
|
112 |
+
|
113 |
+
if server_path_or_url.endswith(".py"):
|
114 |
+
command = "python"
|
115 |
+
|
116 |
+
server_params = StdioServerParameters(
|
117 |
+
command=command,
|
118 |
+
args=[server_path_or_url],
|
119 |
+
env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"},
|
120 |
+
)
|
121 |
+
|
122 |
+
print(
|
123 |
+
f"Starting MCP server with command: {command} {server_path_or_url}"
|
124 |
+
)
|
125 |
+
# Launch MCP subprocess and bind streams on the current running loop
|
126 |
+
stdio_transport = await self.exit_stack.enter_async_context(
|
127 |
+
stdio_client(server_params)
|
128 |
+
)
|
129 |
+
self.stdio, self.write = stdio_transport
|
130 |
+
else:
|
131 |
+
print(f"Connecting to MCP server at: {server_path_or_url}")
|
132 |
+
sse_transport = await self.exit_stack.enter_async_context(
|
133 |
+
sse_client(
|
134 |
+
server_path_or_url,
|
135 |
+
headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
|
136 |
+
)
|
137 |
+
)
|
138 |
+
self.stdio, self.write = sse_transport
|
139 |
+
|
140 |
+
print("Creating MCP client session...")
|
141 |
+
# Create ClientSession on this same loop
|
142 |
+
self.session = await self.exit_stack.enter_async_context(
|
143 |
+
ClientSession(self.stdio, self.write)
|
144 |
+
)
|
145 |
+
await self.session.initialize()
|
146 |
+
print("MCP session initialized successfully")
|
147 |
+
|
148 |
+
response = await self.session.list_tools()
|
149 |
+
self.tools = [
|
150 |
+
{
|
151 |
+
"name": tool.name,
|
152 |
+
"description": tool.description,
|
153 |
+
"input_schema": tool.inputSchema,
|
154 |
+
}
|
155 |
+
for tool in response.tools
|
156 |
+
]
|
157 |
+
|
158 |
+
print("Available tools:", self.tools)
|
159 |
+
tool_names = [tool["name"] for tool in self.tools]
|
160 |
+
return f"Connected to MCP server. Available tools: {', '.join(tool_names)}"
|
161 |
+
except Exception as e:
|
162 |
+
error_msg = f"Failed to connect to MCP server: {str(e)}"
|
163 |
+
print(error_msg)
|
164 |
+
# Clean up on error
|
165 |
+
if self.exit_stack:
|
166 |
+
await self.exit_stack.aclose()
|
167 |
+
self.exit_stack = None
|
168 |
+
self.session = None
|
169 |
+
return error_msg
|
170 |
+
|
171 |
+
async def disconnect(self):
|
172 |
+
if self.exit_stack:
|
173 |
+
print("Disconnecting from MCP server...")
|
174 |
+
await self.exit_stack.aclose()
|
175 |
+
self.exit_stack = None
|
176 |
+
self.session = None
|
177 |
+
|
178 |
+
async def process_message(
|
179 |
+
self,
|
180 |
+
message: str,
|
181 |
+
history: List[Union[Dict[str, Any], ChatMessage]],
|
182 |
+
previous_response_id: str = None,
|
183 |
+
):
|
184 |
+
if not self.session and LLM_PROVIDER == "anthropic":
|
185 |
+
messages = history + [
|
186 |
+
{"role": "user", "content": message},
|
187 |
+
{
|
188 |
+
"role": "assistant",
|
189 |
+
"content": "Please connect to an MCP server first by reloading the page.",
|
190 |
+
},
|
191 |
+
]
|
192 |
+
yield messages, gr.Textbox(value=""), gr.Textbox(value=previous_response_id)
|
193 |
+
else:
|
194 |
+
messages = history + [
|
195 |
+
{"role": "user", "content": message},
|
196 |
+
{
|
197 |
+
"role": "assistant",
|
198 |
+
"content": "Ok, let me think about your query 🤔...",
|
199 |
+
},
|
200 |
+
]
|
201 |
+
|
202 |
+
yield messages, gr.Textbox(value=""), gr.Textbox(value=previous_response_id)
|
203 |
+
# simulate thinking with asyncio.sleep
|
204 |
+
await asyncio.sleep(0.1)
|
205 |
+
messages.pop(-1)
|
206 |
+
|
207 |
+
is_delta = False
|
208 |
+
async for partial in self._process_query(
|
209 |
+
message, history, previous_response_id
|
210 |
+
):
|
211 |
+
if partial[-1].get("delta"):
|
212 |
+
if not is_delta:
|
213 |
+
is_delta = True
|
214 |
+
messages.append(
|
215 |
+
{
|
216 |
+
"role": "assistant",
|
217 |
+
"content": "",
|
218 |
+
}
|
219 |
+
)
|
220 |
+
messages[-1]["content"] += partial[-1]["delta"]
|
221 |
+
if partial[-1].get("status") == "done":
|
222 |
+
await asyncio.sleep(0.05)
|
223 |
+
else:
|
224 |
+
is_delta = False
|
225 |
+
if partial[-1].get("response_id"):
|
226 |
+
previous_response_id = partial[-1]["response_id"]
|
227 |
+
yield (
|
228 |
+
messages,
|
229 |
+
gr.Textbox(value=""),
|
230 |
+
gr.Textbox(value=previous_response_id),
|
231 |
+
)
|
232 |
+
await asyncio.sleep(0.01)
|
233 |
+
continue
|
234 |
+
else:
|
235 |
+
messages.extend(partial)
|
236 |
+
print(partial)
|
237 |
+
|
238 |
+
yield (
|
239 |
+
messages,
|
240 |
+
gr.Textbox(value=""),
|
241 |
+
gr.Textbox(value=previous_response_id),
|
242 |
+
)
|
243 |
+
await asyncio.sleep(0.01)
|
244 |
+
|
245 |
+
if (
|
246 |
+
messages[-1]["role"] == "assistant"
|
247 |
+
and messages[-1]["content"]
|
248 |
+
== "The LLM API is overloaded now, try again later..."
|
249 |
+
):
|
250 |
+
break
|
251 |
+
|
252 |
+
with open("messages.log.jsonl", "a+") as fl:
|
253 |
+
fl.write(json.dumps(dict(time=f"{datetime.now()}", messages=messages)))
|
254 |
+
|
255 |
+
async def _process_query_openai(
|
256 |
+
self,
|
257 |
+
message: str,
|
258 |
+
history: List[Union[Dict[str, Any], ChatMessage]],
|
259 |
+
previous_response_id: str = None,
|
260 |
+
):
|
261 |
+
response = self.openai.responses.create(
|
262 |
+
model=OPENAI_MODEL,
|
263 |
+
tools=[
|
264 |
+
{
|
265 |
+
"type": "mcp",
|
266 |
+
"server_label": "wdi_mcp",
|
267 |
+
"server_url": "https://avsolatorio-test-data-mcp-server.hf.space/gradio_api/mcp/sse",
|
268 |
+
"require_approval": "never",
|
269 |
+
"headers": {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
|
270 |
+
# "server_token": userdata.get('MCP_HF_TOKEN'),
|
271 |
+
},
|
272 |
+
],
|
273 |
+
# input="What transport protocols are supported in the 2025-03-26 version of the MCP spec?",
|
274 |
+
instructions=SYSTEM_PROMPT,
|
275 |
+
# input="What is the gdp of india in 2020?",
|
276 |
+
input=message,
|
277 |
+
parallel_tool_calls=False,
|
278 |
+
stream=True,
|
279 |
+
max_output_tokens=32768,
|
280 |
+
temperature=0,
|
281 |
+
previous_response_id=previous_response_id
|
282 |
+
if previous_response_id.strip()
|
283 |
+
else None,
|
284 |
+
store=True, # Store the response in the OpenAIlogs
|
285 |
+
)
|
286 |
+
|
287 |
+
is_tool_call = False
|
288 |
+
tool_name = None
|
289 |
+
tool_args = None
|
290 |
+
for event in response:
|
291 |
+
if isinstance(event, ResponseCompletedEvent):
|
292 |
+
yield [
|
293 |
+
{
|
294 |
+
"response_id": event.response.id,
|
295 |
+
}
|
296 |
+
]
|
297 |
+
elif (
|
298 |
+
isinstance(event, ResponseOutputItemAddedEvent)
|
299 |
+
and event.item.type == "mcp_call"
|
300 |
+
):
|
301 |
+
is_tool_call = True
|
302 |
+
tool_name = event.item.name
|
303 |
+
# if isinstance(event, ResponseMcpCallInProgressEvent):
|
304 |
+
# is_tool_call = True
|
305 |
+
# yield [
|
306 |
+
# {
|
307 |
+
# "role": "assistant",
|
308 |
+
# "content": "I'll use the tool to help answer your question.",
|
309 |
+
# }
|
310 |
+
# ]
|
311 |
+
if is_tool_call:
|
312 |
+
if (
|
313 |
+
isinstance(event, ResponseAudioDeltaEvent)
|
314 |
+
and event.type == "response.mcp_call_arguments.done"
|
315 |
+
):
|
316 |
+
tool_args = event.arguments
|
317 |
+
|
318 |
+
try:
|
319 |
+
tool_args = json.dumps(
|
320 |
+
json.loads(tool_args), ensure_ascii=True, indent=2
|
321 |
+
)
|
322 |
+
except:
|
323 |
+
pass
|
324 |
+
|
325 |
+
yield [
|
326 |
+
{
|
327 |
+
"role": "assistant",
|
328 |
+
"content": f"I'll use the {tool_name} tool to help answer your question.",
|
329 |
+
"metadata": {
|
330 |
+
"title": f"Using tool: {tool_name.replace('avsolatorio_test_data_mcp_server', '')}",
|
331 |
+
"log": f"Parameters: {tool_args}",
|
332 |
+
# "status": "pending",
|
333 |
+
"status": "done",
|
334 |
+
"id": f"tool_call_{tool_name}",
|
335 |
+
},
|
336 |
+
}
|
337 |
+
]
|
338 |
+
|
339 |
+
yield [
|
340 |
+
{
|
341 |
+
"role": "assistant",
|
342 |
+
"content": "```json\n" + tool_args + "\n```",
|
343 |
+
"metadata": {
|
344 |
+
"parent_id": f"tool_call_{tool_name}",
|
345 |
+
"id": f"params_{tool_name}",
|
346 |
+
"title": "Tool Parameters",
|
347 |
+
},
|
348 |
+
}
|
349 |
+
]
|
350 |
+
|
351 |
+
elif isinstance(event, ResponseOutputItemDoneEvent):
|
352 |
+
if event.item.type == "mcp_call":
|
353 |
+
yield [
|
354 |
+
{
|
355 |
+
"role": "assistant",
|
356 |
+
"content": "Here are the results from the tool:",
|
357 |
+
"metadata": {
|
358 |
+
"title": f"Tool Result for {tool_name.replace('avsolatorio_test_data_mcp_server', '')}",
|
359 |
+
"status": "done",
|
360 |
+
"id": f"result_{tool_name}",
|
361 |
+
},
|
362 |
+
}
|
363 |
+
]
|
364 |
+
|
365 |
+
result_content = event.item.output
|
366 |
+
if result_content.startswith("root="):
|
367 |
+
result_content = result_content[5:]
|
368 |
+
try:
|
369 |
+
result_content = ast.literal_eval(result_content)
|
370 |
+
result_content = json.dumps(result_content, indent=2)
|
371 |
+
except:
|
372 |
+
pass
|
373 |
+
|
374 |
+
yield [
|
375 |
+
{
|
376 |
+
"role": "assistant",
|
377 |
+
"content": "```\n" + result_content + "\n```",
|
378 |
+
"metadata": {
|
379 |
+
"parent_id": f"result_{tool_name}",
|
380 |
+
"id": f"raw_result_{tool_name}",
|
381 |
+
"title": "Raw Output",
|
382 |
+
},
|
383 |
+
}
|
384 |
+
]
|
385 |
+
is_tool_call = False
|
386 |
+
tool_name = None
|
387 |
+
tool_args = None
|
388 |
+
|
389 |
+
elif (
|
390 |
+
isinstance(event, ResponseContentPartDoneEvent)
|
391 |
+
and event.type == "response.content_part.done"
|
392 |
+
):
|
393 |
+
yield [
|
394 |
+
{
|
395 |
+
"role": "assistant",
|
396 |
+
"content": "",
|
397 |
+
"delta": "",
|
398 |
+
"status": "done",
|
399 |
+
}
|
400 |
+
]
|
401 |
+
elif isinstance(event, ResponseTextDeltaEvent):
|
402 |
+
yield [{"role": "assistant", "content": None, "delta": event.delta}]
|
403 |
+
|
404 |
+
async def _process_query_anthropic(
|
405 |
+
self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]
|
406 |
+
):
|
407 |
+
claude_messages = []
|
408 |
+
for msg in history:
|
409 |
+
if isinstance(msg, ChatMessage):
|
410 |
+
role, content = msg.role, msg.content
|
411 |
+
else:
|
412 |
+
role, content = msg.get("role"), msg.get("content")
|
413 |
+
|
414 |
+
if role in ["user", "assistant", "system"]:
|
415 |
+
claude_messages.append({"role": role, "content": content})
|
416 |
+
|
417 |
+
claude_messages.append({"role": "user", "content": message})
|
418 |
+
|
419 |
+
try:
|
420 |
+
response = self.anthropic.messages.create(
|
421 |
+
# model="claude-3-5-sonnet-20241022",
|
422 |
+
model=LLM_MODEL,
|
423 |
+
system=SYSTEM_PROMPT,
|
424 |
+
max_tokens=1000,
|
425 |
+
messages=claude_messages,
|
426 |
+
tools=self.tools,
|
427 |
+
)
|
428 |
+
except OverloadedError:
|
429 |
+
yield [
|
430 |
+
{
|
431 |
+
"role": "assistant",
|
432 |
+
"content": "The LLM API is overloaded now, try again later...",
|
433 |
+
}
|
434 |
+
]
|
435 |
+
# TODO: Add a retry mechanism
|
436 |
+
|
437 |
+
result_messages = []
|
438 |
+
partial_messages = []
|
439 |
+
|
440 |
+
print(response.content)
|
441 |
+
contents = response.content
|
442 |
+
|
443 |
+
MAX_CALLS = 10
|
444 |
+
auto_calls = 0
|
445 |
+
|
446 |
+
while len(contents) > 0 and auto_calls < MAX_CALLS:
|
447 |
+
content = contents.pop(0)
|
448 |
+
|
449 |
+
if content.type == "text":
|
450 |
+
result_messages.append({"role": "assistant", "content": content.text})
|
451 |
+
claude_messages.append({"role": "assistant", "content": content.text})
|
452 |
+
partial_messages.append(result_messages[-1])
|
453 |
+
yield [result_messages[-1]]
|
454 |
+
partial_messages = []
|
455 |
+
|
456 |
+
elif content.type == "tool_use":
|
457 |
+
tool_id = content.id
|
458 |
+
tool_name = content.name
|
459 |
+
tool_args = content.input
|
460 |
+
|
461 |
+
result_messages.append(
|
462 |
+
{
|
463 |
+
"role": "assistant",
|
464 |
+
"content": f"I'll use the {tool_name} tool to help answer your question.",
|
465 |
+
"metadata": {
|
466 |
+
"title": f"Using tool: {tool_name.replace('avsolatorio_test_data_mcp_server', '')}",
|
467 |
+
"log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
|
468 |
+
# "status": "pending",
|
469 |
+
"status": "done",
|
470 |
+
"id": f"tool_call_{tool_name}",
|
471 |
+
},
|
472 |
+
}
|
473 |
+
)
|
474 |
+
partial_messages.append(result_messages[-1])
|
475 |
+
yield [result_messages[-1]]
|
476 |
+
|
477 |
+
result_messages.append(
|
478 |
+
{
|
479 |
+
"role": "assistant",
|
480 |
+
"content": "```json\n"
|
481 |
+
+ json.dumps(tool_args, indent=2, ensure_ascii=True)
|
482 |
+
+ "\n```",
|
483 |
+
"metadata": {
|
484 |
+
"parent_id": f"tool_call_{tool_name}",
|
485 |
+
"id": f"params_{tool_name}",
|
486 |
+
"title": "Tool Parameters",
|
487 |
+
},
|
488 |
+
}
|
489 |
+
)
|
490 |
+
partial_messages.append(result_messages[-1])
|
491 |
+
yield [result_messages[-1]]
|
492 |
+
|
493 |
+
print(f"Calling tool: {tool_name} with args: {tool_args}")
|
494 |
+
try:
|
495 |
+
# Check if session is still valid
|
496 |
+
if not self.session or not self.stdio or not self.write:
|
497 |
+
raise Exception(
|
498 |
+
"MCP session is not connected or has been closed"
|
499 |
+
)
|
500 |
+
|
501 |
+
result = await self.session.call_tool(tool_name, tool_args)
|
502 |
+
except Exception as e:
|
503 |
+
error_msg = f"Error calling tool {tool_name}: {str(e)}"
|
504 |
+
print(error_msg)
|
505 |
+
result_messages.append(
|
506 |
+
{
|
507 |
+
"role": "assistant",
|
508 |
+
"content": f"Sorry, I encountered an error while calling the tool: {error_msg}. Please try again or reload the page.",
|
509 |
+
"metadata": {
|
510 |
+
"title": f"Tool Error for {tool_name.replace('avsolatorio_test_data_mcp_server', '')}",
|
511 |
+
"status": "done",
|
512 |
+
"id": f"error_{tool_name}",
|
513 |
+
},
|
514 |
+
}
|
515 |
+
)
|
516 |
+
partial_messages.append(result_messages[-1])
|
517 |
+
yield [result_messages[-1]]
|
518 |
+
partial_messages = []
|
519 |
+
continue
|
520 |
+
|
521 |
+
if result_messages and "metadata" in result_messages[-2]:
|
522 |
+
result_messages[-2]["metadata"]["status"] = "done"
|
523 |
+
|
524 |
+
result_messages.append(
|
525 |
+
{
|
526 |
+
"role": "assistant",
|
527 |
+
"content": "Here are the results from the tool:",
|
528 |
+
"metadata": {
|
529 |
+
"title": f"Tool Result for {tool_name.replace('avsolatorio_test_data_mcp_server', '')}",
|
530 |
+
"status": "done",
|
531 |
+
"id": f"result_{tool_name}",
|
532 |
+
},
|
533 |
+
}
|
534 |
+
)
|
535 |
+
partial_messages.append(result_messages[-1])
|
536 |
+
yield [result_messages[-1]]
|
537 |
+
partial_messages = []
|
538 |
+
|
539 |
+
result_content = result.content
|
540 |
+
print(result_content)
|
541 |
+
if isinstance(result_content, list):
|
542 |
+
result_content = [r.model_dump() for r in result_content]
|
543 |
+
|
544 |
+
for r in result_content:
|
545 |
+
# Remove annotations field from each item if it exists
|
546 |
+
r.pop("annotations", None)
|
547 |
+
try:
|
548 |
+
r["text"] = json.loads(r["text"])
|
549 |
+
except:
|
550 |
+
pass
|
551 |
+
|
552 |
+
print("result_content", result_content)
|
553 |
+
|
554 |
+
result_messages.append(
|
555 |
+
{
|
556 |
+
"role": "assistant",
|
557 |
+
"content": "```\n"
|
558 |
+
+ json.dumps(result_content, indent=2)
|
559 |
+
+ "\n```",
|
560 |
+
"metadata": {
|
561 |
+
"parent_id": f"result_{tool_name}",
|
562 |
+
"id": f"raw_result_{tool_name}",
|
563 |
+
"title": "Raw Output",
|
564 |
+
},
|
565 |
+
}
|
566 |
+
)
|
567 |
+
partial_messages.append(result_messages[-1])
|
568 |
+
yield [result_messages[-1]]
|
569 |
+
partial_messages = []
|
570 |
+
|
571 |
+
claude_messages.append(
|
572 |
+
{"role": "assistant", "content": [content.model_dump()]}
|
573 |
+
)
|
574 |
+
claude_messages.append(
|
575 |
+
{
|
576 |
+
"role": "user",
|
577 |
+
"content": [
|
578 |
+
{
|
579 |
+
"type": "tool_result",
|
580 |
+
"tool_use_id": tool_id,
|
581 |
+
"content": json.dumps(result_content, indent=2),
|
582 |
+
}
|
583 |
+
],
|
584 |
+
}
|
585 |
+
)
|
586 |
+
|
587 |
+
try:
|
588 |
+
next_response = self.anthropic.messages.create(
|
589 |
+
model=LLM_MODEL,
|
590 |
+
system=SYSTEM_PROMPT,
|
591 |
+
max_tokens=1000,
|
592 |
+
messages=claude_messages,
|
593 |
+
tools=self.tools,
|
594 |
+
)
|
595 |
+
auto_calls += 1
|
596 |
+
except OverloadedError:
|
597 |
+
yield [
|
598 |
+
{
|
599 |
+
"role": "assistant",
|
600 |
+
"content": "The LLM API is overloaded now, try again later...",
|
601 |
+
}
|
602 |
+
]
|
603 |
+
|
604 |
+
print("next_response", next_response.content)
|
605 |
+
|
606 |
+
contents.extend(next_response.content)
|
607 |
+
|
608 |
+
async def _process_query(
|
609 |
+
self,
|
610 |
+
message: str,
|
611 |
+
history: List[Union[Dict[Any, Any], ChatMessage]],
|
612 |
+
previous_response_id: str = None,
|
613 |
+
):
|
614 |
+
if LLM_PROVIDER == "anthropic":
|
615 |
+
async for partial in self._process_query_anthropic(message, history):
|
616 |
+
yield partial
|
617 |
+
elif LLM_PROVIDER == "openai":
|
618 |
+
try:
|
619 |
+
async for partial in self._process_query_openai(
|
620 |
+
message, history, previous_response_id
|
621 |
+
):
|
622 |
+
yield partial
|
623 |
+
except openai.APIError as e:
|
624 |
+
print(e)
|
625 |
+
yield [
|
626 |
+
{
|
627 |
+
"role": "assistant",
|
628 |
+
"content": "The LLM encountered an error. Please try again or reload the page.",
|
629 |
+
}
|
630 |
+
]
|
631 |
+
except Exception as e:
|
632 |
+
print(e)
|
633 |
+
yield [
|
634 |
+
{
|
635 |
+
"role": "assistant",
|
636 |
+
"content": f"Sorry, I encountered an unexpected error: `{e}`. Please try again or reload the page.",
|
637 |
+
}
|
638 |
+
]
|
639 |
+
|
640 |
+
|
641 |
+
def gradio_interface(
|
642 |
+
server_path_or_url: str = "https://avsolatorio-test-data-mcp-server.hf.space/gradio_api/mcp/sse",
|
643 |
+
):
|
644 |
+
# server_path_or_url = "https://avsolatorio-test-data-mcp-server.hf.space/gradio_api/mcp/sse"
|
645 |
+
# server_path_or_url = "wdi_mcp_server.py"
|
646 |
+
|
647 |
+
client = MCPClientWrapper()
|
648 |
+
custom_css = """
|
649 |
+
.gradio-container {
|
650 |
+
background-color: #fff !important;
|
651 |
+
}
|
652 |
+
.message-row.panel.bot-row {
|
653 |
+
background-color: #fff !important;
|
654 |
+
}
|
655 |
+
.message-row.panel.user-row {
|
656 |
+
background-color: #fff !important;
|
657 |
+
}
|
658 |
+
.user {
|
659 |
+
background-color: #f1f6ff !important;
|
660 |
+
}
|
661 |
+
.bot {
|
662 |
+
background-color: #fff !important;
|
663 |
+
}
|
664 |
+
.role {
|
665 |
+
margin-left: 10px !important;
|
666 |
+
}
|
667 |
+
footer{display:none !important}
|
668 |
+
"""
|
669 |
+
|
670 |
+
# Disable auto-dark mode by setting theme to None
|
671 |
+
with gr.Blocks(title="WDI MCP Client", css=custom_css, theme=None) as demo:
|
672 |
+
try:
|
673 |
+
gr.Markdown("# Data360 Chat [Prototype]")
|
674 |
+
# gr.Markdown("Connect to the WDI MCP server and chat with the assistant")
|
675 |
+
|
676 |
+
with gr.Accordion(
|
677 |
+
"Connect to the WDI MCP server and chat with the assistant",
|
678 |
+
open=False,
|
679 |
+
visible=server_path_or_url.endswith(".py"),
|
680 |
+
):
|
681 |
+
with gr.Row(equal_height=True):
|
682 |
+
with gr.Column(scale=4):
|
683 |
+
server_path = gr.Textbox(
|
684 |
+
label="Server Script Path",
|
685 |
+
placeholder="Enter path to server script (e.g., wdi_mcp_server.py)",
|
686 |
+
value=server_path_or_url,
|
687 |
+
)
|
688 |
+
with gr.Column(scale=1):
|
689 |
+
connect_btn = gr.Button("Connect")
|
690 |
+
|
691 |
+
status = gr.Textbox(label="Connection Status", interactive=False)
|
692 |
+
|
693 |
+
chatbot = gr.Chatbot(
|
694 |
+
value=[],
|
695 |
+
height="81vh",
|
696 |
+
type="messages",
|
697 |
+
show_copy_button=False,
|
698 |
+
avatar_images=("img/small-user.png", "img/small-robot.png"),
|
699 |
+
autoscroll=True,
|
700 |
+
layout="panel",
|
701 |
+
placeholder="Ask development data questions!",
|
702 |
+
)
|
703 |
+
previous_response_id = gr.Textbox(
|
704 |
+
label="Previous Response ID", interactive=False, visible=False
|
705 |
+
)
|
706 |
+
|
707 |
+
with gr.Row(equal_height=True):
|
708 |
+
msg = gr.Textbox(
|
709 |
+
label=None,
|
710 |
+
placeholder="Ask about what indicators are available for a specific topic (e.g., What's the definition of GDP?)",
|
711 |
+
scale=4,
|
712 |
+
show_label=False,
|
713 |
+
)
|
714 |
+
# clear_btn = gr.Button("Clear Chat", scale=1)
|
715 |
+
|
716 |
+
# connect_btn.click(client.connect, inputs=server_path, outputs=status)
|
717 |
+
# Automatically call client.connect(...) as soon as the interface loads
|
718 |
+
if LLM_PROVIDER == "anthropic":
|
719 |
+
demo.load(
|
720 |
+
fn=client.connect,
|
721 |
+
inputs=server_path,
|
722 |
+
outputs=status,
|
723 |
+
show_progress="full",
|
724 |
+
)
|
725 |
+
|
726 |
+
msg.submit(
|
727 |
+
client.process_message,
|
728 |
+
[msg, chatbot, previous_response_id],
|
729 |
+
[chatbot, msg, previous_response_id],
|
730 |
+
concurrency_limit=10,
|
731 |
+
)
|
732 |
+
# clear_btn.click(lambda: [], None, chatbot)
|
733 |
+
|
734 |
+
except KeyboardInterrupt:
|
735 |
+
if LLM_PROVIDER == "anthropic":
|
736 |
+
print("Keyboard interrupt received. Disconnecting from MCP server...")
|
737 |
+
asyncio.run(client.disconnect())
|
738 |
+
raise KeyboardInterrupt
|
739 |
+
# demo.unload(client.disconnect)
|
740 |
+
|
741 |
+
return demo
|
742 |
+
|
743 |
+
|
744 |
+
if __name__ == "__main__":
|
745 |
+
if not os.getenv("ANTHROPIC_API_KEY"):
|
746 |
+
print(
|
747 |
+
"Warning: ANTHROPIC_API_KEY not found in environment. Please set it in your .env file."
|
748 |
+
)
|
749 |
+
|
750 |
+
# interface = gradio_interface(server_path_or_url="wdi_mcp_server.py")
|
751 |
+
interface = gradio_interface(
|
752 |
+
server_path_or_url="https://avsolatorio-test-data-mcp-server.hf.space/gradio_api/mcp/sse"
|
753 |
+
)
|
754 |
+
interface.launch(
|
755 |
+
server_name=os.getenv("SERVER_NAME", "127.0.0.1"),
|
756 |
+
server_port=os.getenv("SERVER_PORT", 7860),
|
757 |
+
debug=True,
|
758 |
+
)
|
mcp_remote_client.py
CHANGED
@@ -425,7 +425,7 @@ def gradio_interface(
|
|
425 |
# Disable auto-dark mode by setting theme to None
|
426 |
with gr.Blocks(title="WDI MCP Client", css=custom_css, theme=None) as demo:
|
427 |
try:
|
428 |
-
gr.Markdown("#
|
429 |
# gr.Markdown("Connect to the WDI MCP server and chat with the assistant")
|
430 |
|
431 |
with gr.Accordion(
|
|
|
425 |
# Disable auto-dark mode by setting theme to None
|
426 |
with gr.Blocks(title="WDI MCP Client", css=custom_css, theme=None) as demo:
|
427 |
try:
|
428 |
+
gr.Markdown("# Data360 Chat [Prototype]")
|
429 |
# gr.Markdown("Connect to the WDI MCP server and chat with the assistant")
|
430 |
|
431 |
with gr.Accordion(
|
pyproject.toml
CHANGED
@@ -11,6 +11,7 @@ dependencies = [
|
|
11 |
"httpx>=0.28.1",
|
12 |
"mcp>=1.10.0",
|
13 |
"numpy>=2.2.6",
|
|
|
14 |
"python-ulid>=3.0.0",
|
15 |
"scikit-learn>=1.6.1",
|
16 |
"sentence-transformers>=4.1.0",
|
|
|
11 |
"httpx>=0.28.1",
|
12 |
"mcp>=1.10.0",
|
13 |
"numpy>=2.2.6",
|
14 |
+
"openai>=1.93.1",
|
15 |
"python-ulid>=3.0.0",
|
16 |
"scikit-learn>=1.6.1",
|
17 |
"sentence-transformers>=4.1.0",
|
services.py
CHANGED
@@ -202,6 +202,14 @@ def get_wdi_data(
|
|
202 |
break
|
203 |
|
204 |
metadata, data_page = json_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
all_data.extend(data_page)
|
206 |
|
207 |
if len(all_data) >= MAX_INFO:
|
|
|
202 |
break
|
203 |
|
204 |
metadata, data_page = json_response
|
205 |
+
|
206 |
+
if data_page is None:
|
207 |
+
if metadata.get("total") == 0:
|
208 |
+
note = "IMPORTANT: Let the user know that the indicator data is not available for the given country and date."
|
209 |
+
else:
|
210 |
+
note = "ERROR: The API response is invalid or empty."
|
211 |
+
break
|
212 |
+
|
213 |
all_data.extend(data_page)
|
214 |
|
215 |
if len(all_data) >= MAX_INFO:
|
uv.lock
CHANGED
@@ -1215,6 +1215,25 @@ wheels = [
|
|
1215 |
{ url = "https://files.pythonhosted.org/packages/9e/4e/0d0c945463719429b7bd21dece907ad0bde437a2ff12b9b12fee94722ab0/nvidia_nvtx_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl", hash = "sha256:6574241a3ec5fdc9334353ab8c479fe75841dbe8f4532a8fc97ce63503330ba1", size = 89265, upload-time = "2024-10-01T17:00:38.172Z" },
|
1216 |
]
|
1217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1218 |
[[package]]
|
1219 |
name = "orjson"
|
1220 |
version = "3.10.18"
|
@@ -2298,6 +2317,7 @@ dependencies = [
|
|
2298 |
{ name = "httpx" },
|
2299 |
{ name = "mcp" },
|
2300 |
{ name = "numpy" },
|
|
|
2301 |
{ name = "python-ulid" },
|
2302 |
{ name = "scikit-learn" },
|
2303 |
{ name = "sentence-transformers" },
|
@@ -2316,6 +2336,7 @@ requires-dist = [
|
|
2316 |
{ name = "httpx", specifier = ">=0.28.1" },
|
2317 |
{ name = "mcp", specifier = ">=1.10.0" },
|
2318 |
{ name = "numpy", specifier = ">=2.2.6" },
|
|
|
2319 |
{ name = "python-ulid", specifier = ">=3.0.0" },
|
2320 |
{ name = "scikit-learn", specifier = ">=1.6.1" },
|
2321 |
{ name = "sentence-transformers", specifier = ">=4.1.0" },
|
|
|
1215 |
{ url = "https://files.pythonhosted.org/packages/9e/4e/0d0c945463719429b7bd21dece907ad0bde437a2ff12b9b12fee94722ab0/nvidia_nvtx_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl", hash = "sha256:6574241a3ec5fdc9334353ab8c479fe75841dbe8f4532a8fc97ce63503330ba1", size = 89265, upload-time = "2024-10-01T17:00:38.172Z" },
|
1216 |
]
|
1217 |
|
1218 |
+
[[package]]
|
1219 |
+
name = "openai"
|
1220 |
+
version = "1.93.1"
|
1221 |
+
source = { registry = "https://pypi.org/simple" }
|
1222 |
+
dependencies = [
|
1223 |
+
{ name = "anyio" },
|
1224 |
+
{ name = "distro" },
|
1225 |
+
{ name = "httpx" },
|
1226 |
+
{ name = "jiter" },
|
1227 |
+
{ name = "pydantic" },
|
1228 |
+
{ name = "sniffio" },
|
1229 |
+
{ name = "tqdm" },
|
1230 |
+
{ name = "typing-extensions" },
|
1231 |
+
]
|
1232 |
+
sdist = { url = "https://files.pythonhosted.org/packages/5e/a8/e4427729da048cb33bda15e70f09f7520bdf3577bafc546b135ecb36af7d/openai-1.93.1.tar.gz", hash = "sha256:11eb8932965d0f79ecc4cb38a60a0c4cef4bcd5fcf08b99fc9a399fa5f1e50ab", size = 487124, upload-time = "2025-07-07T16:40:38.389Z" }
|
1233 |
+
wheels = [
|
1234 |
+
{ url = "https://files.pythonhosted.org/packages/64/4f/875e5af1fb4e5ed4ea9e4a88f482d9ca2e48932105605b6c516e9a14de25/openai-1.93.1-py3-none-any.whl", hash = "sha256:a2c2946c4f21346d4902311a7440381fd8a33466ee7ca688133d1cad29a9357c", size = 755081, upload-time = "2025-07-07T16:40:36.585Z" },
|
1235 |
+
]
|
1236 |
+
|
1237 |
[[package]]
|
1238 |
name = "orjson"
|
1239 |
version = "3.10.18"
|
|
|
2317 |
{ name = "httpx" },
|
2318 |
{ name = "mcp" },
|
2319 |
{ name = "numpy" },
|
2320 |
+
{ name = "openai" },
|
2321 |
{ name = "python-ulid" },
|
2322 |
{ name = "scikit-learn" },
|
2323 |
{ name = "sentence-transformers" },
|
|
|
2336 |
{ name = "httpx", specifier = ">=0.28.1" },
|
2337 |
{ name = "mcp", specifier = ">=1.10.0" },
|
2338 |
{ name = "numpy", specifier = ">=2.2.6" },
|
2339 |
+
{ name = "openai", specifier = ">=1.93.1" },
|
2340 |
{ name = "python-ulid", specifier = ">=3.0.0" },
|
2341 |
{ name = "scikit-learn", specifier = ">=1.6.1" },
|
2342 |
{ name = "sentence-transformers", specifier = ">=4.1.0" },
|