|
|
|
import argparse |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from controlnetxs import ControlNetXSModel |
|
from PIL import Image |
|
from pipeline_controlnet_xs import StableDiffusionControlNetXSPipeline |
|
|
|
from diffusers.utils import load_image |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--prompt", type=str, default="aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" |
|
) |
|
parser.add_argument("--negative_prompt", type=str, default="low quality, bad quality, sketches") |
|
parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.7) |
|
parser.add_argument( |
|
"--image_path", |
|
type=str, |
|
default="https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png", |
|
) |
|
parser.add_argument("--num_inference_steps", type=int, default=50) |
|
|
|
args = parser.parse_args() |
|
|
|
prompt = args.prompt |
|
negative_prompt = args.negative_prompt |
|
|
|
image = load_image(args.image_path) |
|
|
|
|
|
controlnet_conditioning_scale = args.controlnet_conditioning_scale |
|
controlnet = ControlNetXSModel.from_pretrained("UmerHA/ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16) |
|
pipe = StableDiffusionControlNetXSPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-1", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
|
|
|
|
image = np.array(image) |
|
image = cv2.Canny(image, 100, 200) |
|
image = image[:, :, None] |
|
image = np.concatenate([image, image, image], axis=2) |
|
canny_image = Image.fromarray(image) |
|
|
|
num_inference_steps = args.num_inference_steps |
|
|
|
|
|
image = pipe( |
|
prompt, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
image=canny_image, |
|
num_inference_steps=num_inference_steps, |
|
).images[0] |
|
image.save("cnxs_sd.canny.png") |
|
|