# !pip install opencv-python transformers accelerate import argparse import cv2 import numpy as np import torch from controlnetxs import ControlNetXSModel from PIL import Image from pipeline_controlnet_xs import StableDiffusionControlNetXSPipeline from diffusers.utils import load_image parser = argparse.ArgumentParser() parser.add_argument( "--prompt", type=str, default="aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" ) parser.add_argument("--negative_prompt", type=str, default="low quality, bad quality, sketches") parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.7) parser.add_argument( "--image_path", type=str, default="https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png", ) parser.add_argument("--num_inference_steps", type=int, default=50) args = parser.parse_args() prompt = args.prompt negative_prompt = args.negative_prompt # download an image image = load_image(args.image_path) # initialize the models and pipeline controlnet_conditioning_scale = args.controlnet_conditioning_scale controlnet = ControlNetXSModel.from_pretrained("UmerHA/ConrolNetXS-SD2.1-canny", torch_dtype=torch.float16) pipe = StableDiffusionControlNetXSPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() # get canny image image = np.array(image) image = cv2.Canny(image, 100, 200) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) num_inference_steps = args.num_inference_steps # generate image image = pipe( prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, image=canny_image, num_inference_steps=num_inference_steps, ).images[0] image.save("cnxs_sd.canny.png")