|
import streamlit as st
|
|
import os
|
|
import tempfile
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain_groq import ChatGroq
|
|
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain_core.runnables import RunnablePassthrough
|
|
from langchain.document_loaders import PyPDFLoader
|
|
from langchain import hub
|
|
|
|
|
|
os.environ["GROQ_API_KEY"] = "your_groq_api_key"
|
|
|
|
|
|
st.title("π PDF Chatbot with RAG")
|
|
st.write("Upload a PDF and ask questions!")
|
|
|
|
|
|
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
|
|
|
if uploaded_file:
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
|
temp_file.write(uploaded_file.read())
|
|
temp_file_path = temp_file.name
|
|
|
|
|
|
loader = PyPDFLoader(temp_file_path)
|
|
docs = loader.load()
|
|
|
|
|
|
llm = ChatGroq(model="llama3-8b-8192")
|
|
model_name = "BAAI/bge-small-en"
|
|
hf_embeddings = HuggingFaceBgeEmbeddings(
|
|
model_name=model_name,
|
|
model_kwargs={'device': 'cpu'},
|
|
encode_kwargs={'normalize_embeddings': True}
|
|
)
|
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
|
splits = text_splitter.split_documents(docs)
|
|
|
|
|
|
vectorstore = FAISS.from_documents(documents=splits, embedding=hf_embeddings)
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
|
|
prompt = hub.pull("rlm/rag-prompt")
|
|
|
|
def format_docs(docs):
|
|
return "\n\n".join(doc.page_content for doc in docs)
|
|
|
|
|
|
rag_chain = (
|
|
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
|
| prompt
|
|
| llm
|
|
)
|
|
|
|
|
|
user_query = st.text_input("Ask a question from the PDF:")
|
|
|
|
if user_query:
|
|
response = rag_chain.invoke(user_query)
|
|
st.write("### π€ AI Response:")
|
|
st.write(response)
|
|
|