Upload 2 files
Browse files- app.py +68 -0
- requirements (1).txt +7 -0
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
from langchain_groq import ChatGroq
|
6 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_core.runnables import RunnablePassthrough
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
+
from langchain import hub
|
11 |
+
|
12 |
+
# Set API key (replace with your actual key)
|
13 |
+
os.environ["GROQ_API_KEY"] = "your_groq_api_key"
|
14 |
+
|
15 |
+
# Streamlit UI
|
16 |
+
st.title("📄 PDF Chatbot with RAG")
|
17 |
+
st.write("Upload a PDF and ask questions!")
|
18 |
+
|
19 |
+
# File uploader
|
20 |
+
uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
|
21 |
+
|
22 |
+
if uploaded_file:
|
23 |
+
# Save uploaded PDF temporarily
|
24 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
25 |
+
temp_file.write(uploaded_file.read())
|
26 |
+
temp_file_path = temp_file.name
|
27 |
+
|
28 |
+
# Load and process PDF
|
29 |
+
loader = PyPDFLoader(temp_file_path)
|
30 |
+
docs = loader.load()
|
31 |
+
|
32 |
+
# Initialize LLM and Embeddings
|
33 |
+
llm = ChatGroq(model="llama3-8b-8192")
|
34 |
+
model_name = "BAAI/bge-small-en"
|
35 |
+
hf_embeddings = HuggingFaceBgeEmbeddings(
|
36 |
+
model_name=model_name,
|
37 |
+
model_kwargs={'device': 'cpu'},
|
38 |
+
encode_kwargs={'normalize_embeddings': True}
|
39 |
+
)
|
40 |
+
|
41 |
+
# Split text
|
42 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
43 |
+
splits = text_splitter.split_documents(docs)
|
44 |
+
|
45 |
+
# Create FAISS vector store
|
46 |
+
vectorstore = FAISS.from_documents(documents=splits, embedding=hf_embeddings)
|
47 |
+
retriever = vectorstore.as_retriever()
|
48 |
+
|
49 |
+
# Load RAG prompt
|
50 |
+
prompt = hub.pull("rlm/rag-prompt")
|
51 |
+
|
52 |
+
def format_docs(docs):
|
53 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
54 |
+
|
55 |
+
# RAG Chain
|
56 |
+
rag_chain = (
|
57 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
58 |
+
| prompt
|
59 |
+
| llm
|
60 |
+
)
|
61 |
+
|
62 |
+
# User Query
|
63 |
+
user_query = st.text_input("Ask a question from the PDF:")
|
64 |
+
|
65 |
+
if user_query:
|
66 |
+
response = rag_chain.invoke(user_query)
|
67 |
+
st.write("### 🤖 AI Response:")
|
68 |
+
st.write(response)
|
requirements (1).txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pypdf
|
3 |
+
langchain_core
|
4 |
+
langchain_community
|
5 |
+
langchain_groq
|
6 |
+
faiss-cpu
|
7 |
+
sentence-transformers
|