Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,58 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
#
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
if system_message:
|
19 |
messages.append({"role": "system", "content": system_message})
|
20 |
|
21 |
-
# Append conversation history.
|
22 |
if history:
|
23 |
for user_msg, bot_msg in history:
|
24 |
messages.append({"role": "user", "content": user_msg})
|
25 |
messages.append({"role": "assistant", "content": bot_msg})
|
26 |
|
27 |
-
# Add the new user message and an empty assistant response
|
28 |
-
# (this mimics your template where the assistant turn is empty to be filled).
|
29 |
messages.append({"role": "user", "content": message})
|
30 |
messages.append({"role": "assistant", "content": ""})
|
31 |
|
@@ -42,15 +69,27 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
|
|
42 |
response_text += token
|
43 |
yield response_text
|
44 |
|
45 |
-
# Create
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
additional_inputs=[
|
|
|
|
|
49 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
53 |
],
|
|
|
|
|
54 |
)
|
55 |
|
56 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
# Define available models.
|
5 |
+
# Each model has a name, description, model ID, and an "enabled" flag.
|
6 |
+
models = [
|
7 |
+
{
|
8 |
+
"name": "Tiny Model",
|
9 |
+
"description": "A small chat model.",
|
10 |
+
"id": "amusktweewt/tiny-model-500M-chat-v2",
|
11 |
+
"enabled": True
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"name": "Another Model",
|
15 |
+
"description": "A bigger chat model (disabled).",
|
16 |
+
"id": "another-model",
|
17 |
+
"enabled": False
|
18 |
+
}
|
19 |
+
]
|
20 |
|
21 |
+
# Build the HTML for the custom dropdown.
|
22 |
+
dropdown_options = ""
|
23 |
+
for model in models:
|
24 |
+
# If a model is disabled, add the "disabled" attribute and modify its label.
|
25 |
+
disabled_attr = "disabled" if not model["enabled"] else ""
|
26 |
+
label = f"{model['name']}: {model['description']}"
|
27 |
+
if not model["enabled"]:
|
28 |
+
label = f"{model['name']} (Disabled): {model['description']}"
|
29 |
+
dropdown_options += f'<option value="{model["id"]}" {disabled_attr}>{label}</option>\n'
|
30 |
+
|
31 |
+
# This HTML dropdown will be displayed. When the user selects an option,
|
32 |
+
# an inline JavaScript updates the value of the hidden textbox with the chosen model ID.
|
33 |
+
dropdown_html = f"""
|
34 |
+
<div>
|
35 |
+
<label for="model_select"><strong>Select Model:</strong></label>
|
36 |
+
<select id="model_select" onchange="document.getElementById('hidden_model').value = this.value;">
|
37 |
+
{dropdown_options}
|
38 |
+
</select>
|
39 |
+
</div>
|
40 |
+
"""
|
41 |
+
|
42 |
+
# The respond function now accepts the model_id as one of its inputs.
|
43 |
+
def respond(message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p):
|
44 |
+
# Instantiate the InferenceClient with the selected model.
|
45 |
+
client = InferenceClient(model_id)
|
46 |
|
47 |
+
messages = []
|
48 |
if system_message:
|
49 |
messages.append({"role": "system", "content": system_message})
|
50 |
|
|
|
51 |
if history:
|
52 |
for user_msg, bot_msg in history:
|
53 |
messages.append({"role": "user", "content": user_msg})
|
54 |
messages.append({"role": "assistant", "content": bot_msg})
|
55 |
|
|
|
|
|
56 |
messages.append({"role": "user", "content": message})
|
57 |
messages.append({"role": "assistant", "content": ""})
|
58 |
|
|
|
69 |
response_text += token
|
70 |
yield response_text
|
71 |
|
72 |
+
# Create Gradio components.
|
73 |
+
# The HTML component displays our custom dropdown.
|
74 |
+
html_dropdown = gr.HTML(value=dropdown_html)
|
75 |
+
# The hidden textbox will hold the selected model ID.
|
76 |
+
hidden_model = gr.Textbox(value=models[0]["id"], visible=False, elem_id="hidden_model")
|
77 |
+
|
78 |
+
# Create the Gradio ChatInterface.
|
79 |
+
# Note: Only components that supply a value are passed to the function.
|
80 |
+
# The HTML component is for display only.
|
81 |
demo = gr.ChatInterface(
|
82 |
+
fn=respond,
|
83 |
additional_inputs=[
|
84 |
+
# hidden_model supplies the model_id.
|
85 |
+
hidden_model,
|
86 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
87 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
88 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
89 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
90 |
],
|
91 |
+
# You can include the HTML dropdown in a layout so that it is visible to the user.
|
92 |
+
layout=[html_dropdown]
|
93 |
)
|
94 |
|
95 |
if __name__ == "__main__":
|