Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
# Define available models.
|
5 |
-
# Each model has a name, description, model ID, and an "enabled" flag.
|
6 |
models = [
|
7 |
{
|
8 |
"name": "Tiny Model",
|
@@ -21,15 +20,12 @@ models = [
|
|
21 |
# Build the HTML for the custom dropdown.
|
22 |
dropdown_options = ""
|
23 |
for model in models:
|
24 |
-
# If a model is disabled, add the "disabled" attribute and modify its label.
|
25 |
disabled_attr = "disabled" if not model["enabled"] else ""
|
26 |
label = f"{model['name']}: {model['description']}"
|
27 |
if not model["enabled"]:
|
28 |
label = f"{model['name']} (Disabled): {model['description']}"
|
29 |
dropdown_options += f'<option value="{model["id"]}" {disabled_attr}>{label}</option>\n'
|
30 |
|
31 |
-
# This HTML dropdown will be displayed. When the user selects an option,
|
32 |
-
# an inline JavaScript updates the value of the hidden textbox with the chosen model ID.
|
33 |
dropdown_html = f"""
|
34 |
<div>
|
35 |
<label for="model_select"><strong>Select Model:</strong></label>
|
@@ -39,20 +35,17 @@ dropdown_html = f"""
|
|
39 |
</div>
|
40 |
"""
|
41 |
|
42 |
-
# The respond function now accepts the model_id as one of its inputs.
|
43 |
def respond(message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p):
|
44 |
-
# Instantiate the InferenceClient
|
45 |
client = InferenceClient(model_id)
|
46 |
|
47 |
messages = []
|
48 |
if system_message:
|
49 |
messages.append({"role": "system", "content": system_message})
|
50 |
-
|
51 |
if history:
|
52 |
for user_msg, bot_msg in history:
|
53 |
messages.append({"role": "user", "content": user_msg})
|
54 |
messages.append({"role": "assistant", "content": bot_msg})
|
55 |
-
|
56 |
messages.append({"role": "user", "content": message})
|
57 |
messages.append({"role": "assistant", "content": ""})
|
58 |
|
@@ -69,28 +62,25 @@ def respond(message, history: list[tuple[str, str]], model_id, system_message, m
|
|
69 |
response_text += token
|
70 |
yield response_text
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
#
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
# You can include the HTML dropdown in a layout so that it is visible to the user.
|
92 |
-
layout=[html_dropdown]
|
93 |
-
)
|
94 |
|
95 |
if __name__ == "__main__":
|
96 |
demo.launch()
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
# Define available models.
|
|
|
5 |
models = [
|
6 |
{
|
7 |
"name": "Tiny Model",
|
|
|
20 |
# Build the HTML for the custom dropdown.
|
21 |
dropdown_options = ""
|
22 |
for model in models:
|
|
|
23 |
disabled_attr = "disabled" if not model["enabled"] else ""
|
24 |
label = f"{model['name']}: {model['description']}"
|
25 |
if not model["enabled"]:
|
26 |
label = f"{model['name']} (Disabled): {model['description']}"
|
27 |
dropdown_options += f'<option value="{model["id"]}" {disabled_attr}>{label}</option>\n'
|
28 |
|
|
|
|
|
29 |
dropdown_html = f"""
|
30 |
<div>
|
31 |
<label for="model_select"><strong>Select Model:</strong></label>
|
|
|
35 |
</div>
|
36 |
"""
|
37 |
|
|
|
38 |
def respond(message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p):
|
39 |
+
# Instantiate the InferenceClient using the selected model.
|
40 |
client = InferenceClient(model_id)
|
41 |
|
42 |
messages = []
|
43 |
if system_message:
|
44 |
messages.append({"role": "system", "content": system_message})
|
|
|
45 |
if history:
|
46 |
for user_msg, bot_msg in history:
|
47 |
messages.append({"role": "user", "content": user_msg})
|
48 |
messages.append({"role": "assistant", "content": bot_msg})
|
|
|
49 |
messages.append({"role": "user", "content": message})
|
50 |
messages.append({"role": "assistant", "content": ""})
|
51 |
|
|
|
62 |
response_text += token
|
63 |
yield response_text
|
64 |
|
65 |
+
# Build the interface using Gradio Blocks.
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
# Display the custom dropdown.
|
68 |
+
gr.HTML(value=dropdown_html)
|
69 |
+
# Hidden textbox to capture the selected model ID.
|
70 |
+
hidden_model = gr.Textbox(value=models[0]["id"], visible=False, elem_id="hidden_model")
|
71 |
+
|
72 |
+
# Create the ChatInterface.
|
73 |
+
chat_interface = gr.ChatInterface(
|
74 |
+
fn=respond,
|
75 |
+
additional_inputs=[
|
76 |
+
# Pass the hidden model selector.
|
77 |
+
hidden_model,
|
78 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
79 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
80 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
81 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
82 |
+
]
|
83 |
+
)
|
|
|
|
|
|
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
demo.launch()
|