Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Define available models. | |
models = [ | |
{ | |
"name": "Tiny Model", | |
"description": "A small chat model.", | |
"id": "amusktweewt/tiny-model-500M-chat-v2", | |
"enabled": True | |
}, | |
{ | |
"name": "Another Model", | |
"description": "A bigger chat model (disabled).", | |
"id": "another-model", | |
"enabled": False | |
} | |
] | |
# Build the HTML for the custom dropdown. | |
dropdown_options = "" | |
for model in models: | |
disabled_attr = "disabled" if not model["enabled"] else "" | |
label = f"{model['name']}: {model['description']}" | |
if not model["enabled"]: | |
label = f"{model['name']} (Disabled): {model['description']}" | |
dropdown_options += f'<option value="{model["id"]}" {disabled_attr}>{label}</option>\n' | |
dropdown_html = f""" | |
<div> | |
<label for="model_select"><strong>Select Model:</strong></label> | |
<select id="model_select" onchange="document.getElementById('hidden_model').value = this.value;"> | |
{dropdown_options} | |
</select> | |
</div> | |
""" | |
def respond(message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p): | |
# Instantiate the InferenceClient using the selected model. | |
client = InferenceClient(model_id) | |
messages = [] | |
if system_message: | |
messages.append({"role": "system", "content": system_message}) | |
if history: | |
for user_msg, bot_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
messages.append({"role": "assistant", "content": ""}) | |
response_text = "" | |
# Stream the response token-by-token. | |
for resp in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = resp.choices[0].delta.content | |
response_text += token | |
yield response_text | |
# Build the interface using Gradio Blocks. | |
with gr.Blocks() as demo: | |
# Display the custom dropdown. | |
gr.HTML(value=dropdown_html) | |
# Hidden textbox to capture the selected model ID. | |
hidden_model = gr.Textbox(value=models[0]["id"], visible=False, elem_id="hidden_model") | |
# Create the ChatInterface. | |
chat_interface = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
# Pass the hidden model selector. | |
hidden_model, | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |