Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# -- 1) DEFINE YOUR MODELS HERE -- | |
models = [ | |
{ | |
"name": "Tiny Model", | |
"description": "A small chat model.", | |
"id": "amusktweewt/tiny-model-500M-chat-v2", | |
"enabled": True | |
}, | |
{ | |
"name": "Another Model", | |
"description": "A bigger chat model (disabled).", | |
"id": "another-model", | |
"enabled": False | |
} | |
] | |
def get_selected_model_id(evt: gr.SelectData): | |
"""Helper to extract the model ID from dropdown selection""" | |
return models[evt.index]["id"] if models[evt.index]["enabled"] else models[0]["id"] | |
def respond(message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p): | |
""" | |
Builds a chat prompt using a simple template: | |
- Optionally includes a system message. | |
- Iterates over conversation history (each exchange as a tuple of (user, assistant)). | |
- Adds the new user message and appends an empty assistant turn. | |
Then it streams the response from the model. | |
""" | |
# -- 2) Instantiate the InferenceClient using the chosen model -- | |
client = InferenceClient(model_id) | |
# Build the messages list. | |
messages = [] | |
if system_message: | |
messages.append({"role": "system", "content": system_message}) | |
if history: | |
for user_msg, bot_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
messages.append({"role": "assistant", "content": ""}) | |
response_text = "" | |
# Stream the response token-by-token. | |
for resp in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = resp.choices[0].delta.content | |
response_text += token | |
yield response_text | |
# -- 3) BUILD THE UI WITH A PROPER GRADIO DROPDOWN -- | |
with gr.Blocks(css=""" | |
.container { | |
max-width: 900px !important; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
#chatbot { | |
height: 600px !important; | |
} | |
.model-dropdown .gr-dropdown { | |
border-radius: 8px; | |
} | |
""") as demo: | |
with gr.Row(): | |
with gr.Column(elem_classes="container"): | |
# Create proper Gradio Dropdown that will respect theme | |
model_choices = [f"{m['name']}: {m['description']}" for m in models] | |
model_dropdown = gr.Dropdown( | |
choices=model_choices, | |
value=model_choices[0], | |
label="Select Model", | |
elem_classes="model-dropdown", | |
scale=3 | |
) | |
# Hidden textbox to store the current model ID (will be read by 'respond') | |
model_id = gr.Textbox( | |
value=models[0]["id"], | |
visible=False, | |
elem_id="hidden_model" | |
) | |
# Update the hidden model_id when dropdown changes | |
def update_model_id(evt): | |
selected_index = evt.index | |
if models[selected_index]["enabled"]: | |
return models[selected_index]["id"] | |
else: | |
# If disabled model selected, stay with default | |
return models[0]["id"] | |
model_dropdown.select( | |
update_model_id, | |
inputs=[], | |
outputs=[model_id] | |
) | |
# System message and parameter controls in a collapsible section | |
with gr.Accordion("Advanced Settings", open=False): | |
system_message = gr.Textbox( | |
value="You are a friendly Chatbot.", | |
label="System message" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
max_tokens = gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=512, | |
step=1, | |
label="Max new tokens" | |
) | |
with gr.Column(scale=1): | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
) | |
with gr.Column(scale=1): | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
) | |
# The ChatInterface with a larger chat area and our parameters | |
chat = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
model_id, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
], | |
chatbot=gr.Chatbot(elem_id="chatbot", height=600) | |
) | |
if __name__ == "__main__": | |
demo.launch() |