import gradio as gr from huggingface_hub import InferenceClient # -- 1) DEFINE YOUR MODELS HERE -- models = [ { "name": "Tiny Model", "description": "A small chat model.", "id": "amusktweewt/tiny-model-500M-chat-v2", "enabled": True }, { "name": "Another Model", "description": "A bigger chat model (disabled).", "id": "another-model", "enabled": False } ] def get_selected_model_id(evt: gr.SelectData): """Helper to extract the model ID from dropdown selection""" return models[evt.index]["id"] if models[evt.index]["enabled"] else models[0]["id"] def respond(message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p): """ Builds a chat prompt using a simple template: - Optionally includes a system message. - Iterates over conversation history (each exchange as a tuple of (user, assistant)). - Adds the new user message and appends an empty assistant turn. Then it streams the response from the model. """ # -- 2) Instantiate the InferenceClient using the chosen model -- client = InferenceClient(model_id) # Build the messages list. messages = [] if system_message: messages.append({"role": "system", "content": system_message}) if history: for user_msg, bot_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) messages.append({"role": "assistant", "content": ""}) response_text = "" # Stream the response token-by-token. for resp in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = resp.choices[0].delta.content response_text += token yield response_text # -- 3) BUILD THE UI WITH A PROPER GRADIO DROPDOWN -- with gr.Blocks(css=""" .container { max-width: 900px !important; margin-left: auto; margin-right: auto; } #chatbot { height: 600px !important; } .model-dropdown .gr-dropdown { border-radius: 8px; } """) as demo: with gr.Row(): with gr.Column(elem_classes="container"): # Create proper Gradio Dropdown that will respect theme model_choices = [f"{m['name']}: {m['description']}" for m in models] model_dropdown = gr.Dropdown( choices=model_choices, value=model_choices[0], label="Select Model", elem_classes="model-dropdown", scale=3 ) # Hidden textbox to store the current model ID (will be read by 'respond') model_id = gr.Textbox( value=models[0]["id"], visible=False, elem_id="hidden_model" ) # Update the hidden model_id when dropdown changes def update_model_id(evt): selected_index = evt.index if models[selected_index]["enabled"]: return models[selected_index]["id"] else: # If disabled model selected, stay with default return models[0]["id"] model_dropdown.select( update_model_id, inputs=[], outputs=[model_id] ) # System message and parameter controls in a collapsible section with gr.Accordion("Advanced Settings", open=False): system_message = gr.Textbox( value="You are a friendly Chatbot.", label="System message" ) with gr.Row(): with gr.Column(scale=1): max_tokens = gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" ) with gr.Column(scale=1): temperature = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ) with gr.Column(scale=1): top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ) # The ChatInterface with a larger chat area and our parameters chat = gr.ChatInterface( respond, additional_inputs=[ model_id, system_message, max_tokens, temperature, top_p, ], chatbot=gr.Chatbot(elem_id="chatbot", height=600) ) if __name__ == "__main__": demo.launch()