newTryOn / scripts /rotate_train.py
amanSethSmava
new commit
6d314be
raw
history blame
12.9 kB
import argparse
import os
import sys
from argparse import Namespace
from tempfile import TemporaryDirectory
import numpy as np
import torch
import torch.nn.functional as F
import wandb
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T
from tqdm.auto import tqdm
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from models.STAR.lib import utility
from models.Encoders import RotateModel
from models.Net import Net
from models.Net import iresnet100
from models.encoder4editing.utils.model_utils import setup_model, get_latents
from utils.bicubic import BicubicDownSample
from utils.train import image_grid, WandbLogger, seed_everything, toggle_grad
class MovingAverageLoss:
def __init__(self, weights: dict, alpha=0.02):
self.alpha = alpha
self.weights = weights
self.vals = {}
def reset(self):
self.vals = {}
def update(self, cur_vals):
for key, val in cur_vals.items():
self.vals[key] = self.alpha * val + (1 - self.alpha) * self.vals.get(key, val)
def calc_loss(self, losses):
loss = 0.
for key, val in losses.items():
loss += self.weights.get(key, 1) * val / self.vals.get(key, 1)
return loss
class Trainer:
def __init__(self,
model=None,
args=None,
optimizer=None,
scheduler=None,
train_dataloader=None,
test_dataloader=None,
logger=None
):
self.model = model
self.args = args
self.optimizer = optimizer
self.scheduler = scheduler
self.train_dataloader = train_dataloader
self.test_dataloader = test_dataloader
self.logger = logger
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.net = Net(Namespace(size=1024, ckpt='pretrained_models/StyleGAN/ffhq.pt', channel_multiplier=2, latent=512,
n_mlp=8, device=self.device))
self.e4e = setup_model('pretrained_models/encoder4editing/e4e_ffhq_encode.pt', 'cuda')[0]
self.arc_face = iresnet100()
self.arc_face.load_state_dict(torch.load("pretrained_models/ArcFace/backbone_r100.pth"))
self.arc_face.eval().cuda()
self.toArcface = T.Compose([
T.Resize((112, 112)),
T.Normalize(0.5, 0.5)
])
# init landmarks
config = utility.get_config(utility.landmarks_arg)
self.kp_extractor = utility.get_net(config)
model_path = utility.landmarks_arg.pretrained_weight
checkpoint = torch.load(model_path)
self.kp_extractor.load_state_dict(checkpoint["net"])
self.kp_extractor = self.kp_extractor.float().to('cuda')
self.kp_extractor.eval()
self.toLandmarks = T.Compose([
T.Resize((256, 256)),
T.Normalize(0.5, 0.5)
])
toggle_grad(self.arc_face, False)
toggle_grad(self.kp_extractor, False)
toggle_grad(self.net.generator, False)
toggle_grad(self.e4e.encoder, False)
self.downsample_512 = BicubicDownSample(factor=2)
self.downsample_256 = BicubicDownSample(factor=4)
self.downsample_128 = BicubicDownSample(factor=8)
self.MAL = MovingAverageLoss({'mse points to': 6, 'mse latents': 2})
self.best_loss = float('+inf')
def generate_key_points(self, batch):
_, _, landmarks = self.kp_extractor(self.toLandmarks(batch))
final_marks_2D = (landmarks[:, :76] + 1) / 2 * torch.tensor([256 - 1, 256 - 1]).to('cuda').view(1, 1, 2)
return final_marks_2D
@torch.no_grad()
def generate_latents(self, batch):
return get_latents(self.e4e, batch)
def save_model(self, name, save_online=True):
with TemporaryDirectory() as tmp_dir:
model_state_dict = self.model.state_dict()
# delete pretrained clip
for key in list(model_state_dict.keys()):
if key.startswith("clip_model."):
del model_state_dict[key]
torch.save({'model_state_dict': model_state_dict}, f'{tmp_dir}/{name}.pth')
self.logger.save(f'{tmp_dir}/{name}.pth', save_online)
def load_model(self, checkpoint_path):
self.model.load_state_dict(torch.load(checkpoint_path)['model_state_dict'], strict=False)
def calc_loss(self,
I_to,
I_from,
key_points_to,
latents_from,
latents_to,
ret_images=False,
normalize=True
):
# rotate
rotate_to = self.model(latents_from[:, :6], latents_to[:, :6])
latent_in = torch.cat((rotate_to, latents_from[:, 6:]), axis=1)
I_G_to, _ = self.net.generator([latent_in], input_is_latent=True, return_latents=False)
I_G_to_0_1 = ((I_G_to + 1) / 2)
I_gen_to = self.downsample_256(I_G_to_0_1).clip(0, 1)
# key_point_loss
key_points_gen_to = self.generate_key_points(I_gen_to)
key_point_loss_to = F.mse_loss(key_points_gen_to, key_points_to)
# arcface loss
gen_embed = self.arc_face(self.toArcface(I_gen_to))
gt_embed = self.arc_face(self.toArcface(I_from))
arc_face_loss = 20 * (1 - F.cosine_similarity(gen_embed, gt_embed)).mean()
losses = {
'mse points to': key_point_loss_to,
'arc face': arc_face_loss
}
if normalize:
losses['loss'] = self.MAL.calc_loss(losses)
else:
losses['loss'] = sum(losses.values())
if ret_images:
return losses['loss'], {key: val.item() for key, val in losses.items()}, I_gen_to, latent_in
else:
return losses['loss'], {key: val.item() for key, val in losses.items()}
def calc_hair_loss(self,
latents_from,
latents_to,
ret_images=False,
normalize=True
):
# rotate
rotate_to = self.model(latents_from[:, :6], latents_to[:, :6])
mse_latents = 300 * F.mse_loss(rotate_to, latents_to[:, :6])
losses = {
'mse latents': mse_latents
}
if normalize:
losses['loss'] = self.MAL.calc_loss(losses)
else:
losses['loss'] = sum(losses.values())
if ret_images:
latent_in = torch.cat((rotate_to, latents_from[:, 6:]), axis=1)
I_G_to, _ = self.net.generator([latent_in], input_is_latent=True, return_latents=False)
I_G_to_0_1 = ((I_G_to + 1) / 2)
I_gen_to = self.downsample_256(I_G_to_0_1).clip(0, 1)
return losses['loss'], {key: val.item() for key, val in losses.items()}, I_gen_to
else:
return losses['loss'], {key: val.item() for key, val in losses.items()}
def train_one_epoch(self):
self.model.to(self.device).train()
sum_losses = lambda x, y: {key: y.get(key, 0) + x.get(key, 0) for key in set(x.keys()) | set(y.keys())}
dataloader_to = iter(self.train_dataloader)
for batch in tqdm(self.train_dataloader):
I_from, key_points_from, latents_from = map(lambda x: x.to(self.device), batch)
I_to, key_points_to, latents_to = map(lambda x: x.to(self.device), next(dataloader_to))
self.optimizer.zero_grad()
loss, info, _, gen_latent = self.calc_loss(
I_to,
I_from,
key_points_to,
latents_from,
latents_to,
ret_images=True
)
if self.args.use_hair_loss:
hair_loss, info2 = self.calc_hair_loss(
gen_latent,
latents_from
)
loss += hair_loss
info = sum_losses(info, info2)
loss.backward()
self.MAL.update(info)
total_norm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5)
self.optimizer.step()
self.logger.next_step()
for key, val in info.items():
self.logger.log(key, val)
self.logger.log('grad', total_norm.item())
@torch.no_grad()
def validate(self):
self.model.to(self.device).eval()
sum_losses = lambda x, y: {key: y.get(key, 0) + x.get(key, 0) for key in set(x.keys()) | set(y.keys())}
files = []
losses = {}
for batch in tqdm(self.test_dataloader):
I_from, key_points_from, latents_from, \
I_to, key_points_to, latents_to, = map(lambda x: x.to(self.device), batch)
bsz = I_from.size(0)
loss, info, I_gen_to, gen_latent = self.calc_loss(
I_to,
I_from,
key_points_to,
latents_from,
latents_to,
ret_images=True,
normalize=False
)
if args.use_hair_loss:
loss, info2, I_gen_to_rec = self.calc_hair_loss(
gen_latent,
latents_from,
ret_images=True,
normalize=False
)
losses = sum_losses(losses, info2)
else:
I_G_from, _ = self.net.generator([latents_from], input_is_latent=True, return_latents=False)
I_G_from_0_1 = ((I_G_from + 1) / 2)
I_gen_to_rec = self.downsample_256(I_G_from_0_1).clip(0, 1)
losses = sum_losses(losses, info)
for k in range(bsz):
files.append([I_from[k].cpu(), I_gen_to_rec[k].cpu(), I_gen_to[k].cpu(), I_to[k].cpu()])
for key, val in losses.items():
val /= len(self.test_dataloader)
self.logger.log(f'val {key}', val)
np.random.seed(1927)
idxs = np.random.choice(len(files), size=min(len(files), 100), replace=False)
images_to_log = [image_grid(list(map(T.functional.to_pil_image, files[idx])), 1, 4) for idx in idxs]
self.logger.log('val images', [wandb.Image(image) for image in images_to_log])
return losses['loss'] / len(self.test_dataloader)
def train_loop(self, epochs):
# self.validate()
for epoch in range(epochs):
self.train_one_epoch()
loss = self.validate()
self.save_model(f'rotate_{epoch}', save_online=False)
self.save_model('last')
if loss <= self.best_loss:
self.best_loss = loss
self.save_model(f'best', save_online=False)
class Rotate_dataset(Dataset):
def __init__(self, tensors_images, key_points, latents, is_test=False):
super().__init__()
self.tensors_images = tensors_images
self.key_points = key_points
self.latents = latents
self.is_test = is_test
def __len__(self):
return len(self.tensors_images)
def __get_elem__(self, idx):
return self.tensors_images[idx], self.key_points[idx], self.latents[idx]
def __getitem__(self, idx):
if self.is_test:
return *self.__get_elem__(idx), *self.__get_elem__(-idx)
else:
return self.__get_elem__(idx)
def main(args):
seed_everything()
data = list(torch.load(args.dataset).values())
X_train, X_test = train_test_split(list(zip(data[0], data[1], data[2])), test_size=512, random_state=42)
train_dataset = Rotate_dataset(*list(zip(*X_train)))
test_dataset = Rotate_dataset(*list(zip(*X_test)), is_test=True)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, pin_memory=True, shuffle=True,
drop_last=True, num_workers=4)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, pin_memory=True, shuffle=False,
num_workers=4)
logger = WandbLogger(name=args.name_run, project='HairFast-Rotate')
logger.start_logging()
logger.save(__file__)
model = RotateModel()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=0.000001)
trainer = Trainer(model, args, optimizer, None, train_dataloader, test_dataloader, logger)
trainer.train_loop(1000)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Rotate trainer')
parser.add_argument('--name_run', type=str, default='test')
parser.add_argument('--dataset', type=str, default='input/rotate_dataset.pkl')
parser.add_argument('--use_hair_loss', action='store_false')
parser.add_argument('--batch_size', type=int, default=16)
args = parser.parse_args()
main(args)