Spaces:
Build error
Build error
""" | |
These interfaces are most based on SEAN. But we modify some of them, and add some new interface for our CtrlHair. | |
""" | |
import argparse | |
import importlib | |
import os | |
import re | |
import cv2 | |
import dill as pickle | |
import numpy as np | |
import torch | |
from PIL import Image | |
def save_obj(obj, name): | |
with open(name, 'wb') as f: | |
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) | |
def load_obj(name): | |
with open(name, 'rb') as f: | |
return pickle.load(f) | |
# returns a configuration for creating a generator | |
# |default_opt| should be the opt of the current experiment | |
# |**kwargs|: if any configuration should be overriden, it can be specified here | |
def copyconf(default_opt, **kwargs): | |
conf = argparse.Namespace(**vars(default_opt)) | |
for key in kwargs: | |
print(key, kwargs[key]) | |
setattr(conf, key, kwargs[key]) | |
return conf | |
def tile_images(imgs, picturesPerRow=4): | |
""" Code borrowed from | |
https://stackoverflow.com/questions/26521365/cleanly-tile-numpy-array-of-images-stored-in-a-flattened-1d-format/26521997 | |
""" | |
# Padding | |
if imgs.shape[0] % picturesPerRow == 0: | |
rowPadding = 0 | |
else: | |
rowPadding = picturesPerRow - imgs.shape[0] % picturesPerRow | |
if rowPadding > 0: | |
imgs = np.concatenate([imgs, np.zeros((rowPadding, *imgs.shape[1:]), dtype=imgs.dtype)], axis=0) | |
# Tiling Loop (The conditionals are not necessary anymore) | |
tiled = [] | |
for i in range(0, imgs.shape[0], picturesPerRow): | |
tiled.append(np.concatenate([imgs[j] for j in range(i, i + picturesPerRow)], axis=1)) | |
tiled = np.concatenate(tiled, axis=0) | |
return tiled | |
# Converts a Tensor into a Numpy array | |
# |imtype|: the desired type of the converted numpy array | |
def tensor2im(image_tensor, imtype=np.uint8, normalize=True, tile=False): | |
if isinstance(image_tensor, list): | |
image_numpy = [] | |
for i in range(len(image_tensor)): | |
image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) | |
return image_numpy | |
if image_tensor.dim() == 4: | |
# transform each image in the batch | |
images_np = [] | |
for b in range(image_tensor.size(0)): | |
one_image = image_tensor[b] | |
one_image_np = tensor2im(one_image) | |
images_np.append(one_image_np.reshape(1, *one_image_np.shape)) | |
images_np = np.concatenate(images_np, axis=0) | |
if tile: | |
images_tiled = tile_images(images_np) | |
return images_tiled | |
else: | |
return images_np | |
if image_tensor.dim() == 2: | |
image_tensor = image_tensor.unsqueeze(0) | |
image_numpy = image_tensor.detach().cpu().float().numpy() | |
if normalize: | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 | |
else: | |
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 | |
image_numpy = np.clip(image_numpy, 0, 255) | |
if image_numpy.shape[2] == 1: | |
image_numpy = image_numpy[:, :, 0] | |
return image_numpy.astype(imtype) | |
# Converts a one-hot tensor into a colorful label map | |
def tensor2label(label_tensor, n_label, imtype=np.uint8, tile=False): | |
if label_tensor.dim() == 4: | |
# transform each image in the batch | |
images_np = [] | |
for b in range(label_tensor.size(0)): | |
one_image = label_tensor[b] | |
one_image_np = tensor2label(one_image, n_label, imtype) | |
images_np.append(one_image_np.reshape(1, *one_image_np.shape)) | |
images_np = np.concatenate(images_np, axis=0) | |
if tile: | |
images_tiled = tile_images(images_np) | |
return images_tiled | |
else: | |
images_np = images_np[0] | |
return images_np | |
if label_tensor.dim() == 1: | |
return np.zeros((64, 64, 3), dtype=np.uint8) | |
if n_label == 0: | |
return tensor2im(label_tensor, imtype) | |
label_tensor = label_tensor.cpu().float() | |
if label_tensor.size()[0] > 1: | |
label_tensor = label_tensor.max(0, keepdim=True)[1] | |
label_tensor = Colorize(n_label)(label_tensor) | |
label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0)) | |
result = label_numpy.astype(imtype) | |
return result | |
def save_image(image_numpy, image_path, create_dir=False): | |
if create_dir: | |
os.makedirs(os.path.dirname(image_path), exist_ok=True) | |
if len(image_numpy.shape) == 2: | |
image_numpy = np.expand_dims(image_numpy, axis=2) | |
if image_numpy.shape[2] == 1: | |
image_numpy = np.repeat(image_numpy, 3, 2) | |
image_pil = Image.fromarray(image_numpy) | |
# save to png | |
image_pil.save(image_path.replace('.jpg', '.png')) | |
def mkdirs(paths): | |
if isinstance(paths, list) and not isinstance(paths, str): | |
for path in paths: | |
mkdir(path) | |
else: | |
mkdir(paths) | |
def mkdir(path): | |
if not os.path.exists(path): | |
os.makedirs(path) | |
def atoi(text): | |
return int(text) if text.isdigit() else text | |
def natural_keys(text): | |
''' | |
alist.sort(key=natural_keys) sorts in human order | |
http://nedbatchelder.com/blog/200712/human_sorting.html | |
(See Toothy's implementation in the comments) | |
''' | |
return [atoi(c) for c in re.split('(\d+)', text)] | |
def natural_sort(items): | |
items.sort(key=natural_keys) | |
def str2bool(v): | |
if v.lower() in ('yes', 'true', 't', 'y', '1'): | |
return True | |
elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |
return False | |
else: | |
raise argparse.ArgumentTypeError('Boolean value expected.') | |
def find_class_in_module(target_cls_name, module): | |
target_cls_name = target_cls_name.replace('_', '').lower() | |
clslib = importlib.import_module(module) | |
cls = None | |
for name, clsobj in clslib.__dict__.items(): | |
if name.lower() == target_cls_name: | |
cls = clsobj | |
if cls is None: | |
print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name)) | |
exit(0) | |
return cls | |
def save_network(net, label, epoch, opt): | |
save_filename = '%s_net_%s.pth' % (epoch, label) | |
save_path = os.path.join(opt.checkpoints_dir, opt.name, save_filename) | |
torch.save(net.cpu().state_dict(), save_path) | |
if len(opt.gpu_ids) and torch.cuda.is_available(): | |
net.cuda() | |
def load_network(net, label, epoch, opt): | |
save_filename = '%s_net_%s.pth' % (epoch, label) | |
save_dir = os.path.join(opt.checkpoints_dir, opt.name) | |
save_path = os.path.join(save_dir, save_filename) | |
weights = torch.load(save_path) | |
net.load_state_dict(weights) | |
return net | |
############################################################################### | |
# Code from | |
# https://github.com/ycszen/pytorch-seg/blob/master/transform.py | |
# Modified so it complies with the Citscape label map colors | |
############################################################################### | |
def uint82bin(n, count=8): | |
"""returns the binary of integer n, count refers to amount of bits""" | |
return ''.join([str((n >> y) & 1) for y in range(count - 1, -1, -1)]) | |
def labelcolormap(N): | |
if N == 35: # cityscape | |
cmap = np.array([(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (111, 74, 0), (81, 0, 81), | |
(128, 64, 128), (244, 35, 232), (250, 170, 160), (230, 150, 140), (70, 70, 70), (102, 102, 156), (190, 153, 153), | |
(180, 165, 180), (150, 100, 100), (150, 120, 90), (153, 153, 153), (153, 153, 153), (250, 170, 30), (220, 220, 0), | |
(107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70), | |
(0, 60, 100), (0, 0, 90), (0, 0, 110), (0, 80, 100), (0, 0, 230), (119, 11, 32), (0, 0, 142)], | |
dtype=np.uint8) | |
else: | |
cmap = np.zeros((N, 3), dtype=np.uint8) | |
for i in range(N): | |
r, g, b = 0, 0, 0 | |
id = i + 1 # let's give 0 a color | |
for j in range(7): | |
str_id = uint82bin(id) | |
r = r ^ (np.uint8(str_id[-1]) << (7 - j)) | |
g = g ^ (np.uint8(str_id[-2]) << (7 - j)) | |
b = b ^ (np.uint8(str_id[-3]) << (7 - j)) | |
id = id >> 3 | |
cmap[i, 0] = r | |
cmap[i, 1] = g | |
cmap[i, 2] = b | |
return cmap | |
class Colorize(object): | |
def __init__(self, n=35): | |
self.cmap = labelcolormap(n) | |
self.cmap = torch.from_numpy(self.cmap[:n]) | |
def __call__(self, gray_image): | |
size = gray_image.size() | |
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0) | |
for label in range(0, len(self.cmap)): | |
mask = (label == gray_image[0]).cpu() | |
color_image[0][mask] = self.cmap[label][0] | |
color_image[1][mask] = self.cmap[label][1] | |
color_image[2][mask] = self.cmap[label][2] | |
return color_image | |
def make_folder(path): | |
if not os.path.exists(os.path.join(path)): | |
os.makedirs(os.path.join(path)) | |
def path_join_abs(*paths): | |
return os.path.abspath(os.path.join(*paths)) | |
def draw_landmark(landmarks, img_rd): | |
landmarks = landmarks.astype('int') | |
img_rd = img_rd.copy() | |
for idx, point in enumerate(landmarks): | |
pos = (point[0], point[1]) | |
cv2.circle(img_rd, pos, 2, color=(139, 0, 0)) | |
cv2.putText(img_rd, str(idx + 1), pos, cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 255), 1, cv2.LINE_AA) | |
return img_rd |