Spaces:
Build error
Build error
""" | |
Copyright (C) 2019 NVIDIA Corporation. All rights reserved. | |
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). | |
""" | |
import sys | |
import argparse | |
import os | |
from util import util | |
import torch | |
from sean_codes import models, data | |
import pickle | |
class BaseOptions(): | |
def __init__(self): | |
self.initialized = False | |
def initialize(self, parser): | |
# experiment specifics | |
parser.add_argument('--name', type=str, default='CelebA-HQ_pretrained', | |
help='name of the experiment. It decides where to store samples and models') | |
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') | |
parser.add_argument('--checkpoints_dir', type=str, default='pretrained_models/sean_checkpoints', | |
help='models are saved here') | |
parser.add_argument('--model', type=str, default='pix2pix', help='which model to use') | |
parser.add_argument('--norm_G', type=str, default='spectralinstance', help='instance normalization or batch normalization') | |
parser.add_argument('--norm_D', type=str, default='spectralinstance', help='instance normalization or batch normalization') | |
parser.add_argument('--norm_E', type=str, default='spectralinstance', help='instance normalization or batch normalization') | |
parser.add_argument('--phase', type=str, default='scripts', help='scripts, val, test, etc') | |
# input/color_texture sizes | |
parser.add_argument('--batchSize', type=int, default=1, help='input batch size') | |
parser.add_argument('--preprocess_mode', type=str, default='scale_width_and_crop', help='scaling and cropping of images at load time.', choices=("resize_and_crop", "crop", "scale_width", "scale_width_and_crop", "scale_shortside", "scale_shortside_and_crop", "fixed", "none")) | |
parser.add_argument('--load_size', type=int, default=256, help='Scale images to this size. The final image will be cropped to --crop_size.') | |
parser.add_argument('--crop_size', type=int, default=256, help='Crop to the width of crop_size (after initially scaling the images to load_size.)') | |
parser.add_argument('--aspect_ratio', type=float, default=1.0, help='The ratio width/height. The final height of the load image will be crop_size/aspect_ratio') | |
parser.add_argument('--label_nc', type=int, default=19, help='# of input label classes without unknown class. If you have unknown class as class label, specify --contain_dopntcare_label.') | |
parser.add_argument('--contain_dontcare_label', action='store_true', help='if the label map contains dontcare label (dontcare=255)') | |
parser.add_argument('--output_nc', type=int, default=3, help='# of color_texture image channels') | |
# for setting inputs | |
parser.add_argument('--dataroot', type=str, default='./datasets/cityscapes/') | |
parser.add_argument('--dataset_mode', type=str, default='custom') | |
parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') | |
parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data argumentation') | |
parser.add_argument('--nThreads', default=28, type=int, help='# threads for loading data') | |
parser.add_argument('--max_dataset_size', type=int, default=sys.maxsize, help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') | |
parser.add_argument('--load_from_opt_file', action='store_true', help='load the options from sean_checkpoints and use that as default') | |
parser.add_argument('--cache_filelist_write', action='store_true', help='saves the current filelist into a text file, so that it loads faster') | |
parser.add_argument('--cache_filelist_read', action='store_true', help='reads from the file list cache') | |
# for displays | |
parser.add_argument('--display_winsize', type=int, default=400, help='display window size') | |
# for generator | |
parser.add_argument('--netG', type=str, default='spade', help='selects model to use for netG (pix2pixhd | spade)') | |
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer') | |
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]') | |
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution') | |
parser.add_argument('--z_dim', type=int, default=256, | |
help="dimension of the latent z vector") | |
# for instance-wise features | |
parser.add_argument('--no_instance', type=bool, default=True, | |
help='if specified, do *not* add instance map as input') | |
parser.add_argument('--nef', type=int, default=16, help='# of encoder filters in the first conv layer') | |
parser.add_argument('--use_vae', action='store_true', help='enable training with an image encoder.') | |
self.initialized = True | |
return parser | |
def gather_options(self): | |
# initialize parser with basic options | |
if not self.initialized: | |
parser = argparse.ArgumentParser( | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser = self.initialize(parser) | |
# get the basic options | |
opt, unknown = parser.parse_known_args() | |
# modify model-related parser options | |
model_name = opt.model | |
model_option_setter = models.get_option_setter(model_name) | |
parser = model_option_setter(parser, self.isTrain) | |
# modify dataset-related parser options | |
dataset_mode = opt.dataset_mode | |
dataset_option_setter = data.get_option_setter(dataset_mode) | |
parser = dataset_option_setter(parser, self.isTrain) | |
opt, unknown = parser.parse_known_args() | |
# if there is opt_file, load it. | |
# The previous default options will be overwritten | |
if opt.load_from_opt_file: | |
parser = self.update_options_from_file(parser, opt) | |
opt = parser.parse_args() | |
self.parser = parser | |
return opt | |
def print_options(self, opt): | |
message = '' | |
message += '----------------- Options ---------------\n' | |
for k, v in sorted(vars(opt).items()): | |
comment = '' | |
default = self.parser.get_default(k) | |
if v != default: | |
comment = '\t[default: %s]' % str(default) | |
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) | |
message += '----------------- End -------------------' | |
print(message) | |
def option_file_path(self, opt, makedir=False): | |
expr_dir = os.path.join(opt.checkpoints_dir, opt.name) | |
if makedir: | |
util.mkdirs(expr_dir) | |
file_name = os.path.join(expr_dir, 'opt') | |
return file_name | |
def save_options(self, opt): | |
file_name = self.option_file_path(opt, makedir=True) | |
with open(file_name + '.txt', 'wt') as opt_file: | |
for k, v in sorted(vars(opt).items()): | |
comment = '' | |
default = self.parser.get_default(k) | |
if v != default: | |
comment = '\t[default: %s]' % str(default) | |
opt_file.write('{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)) | |
with open(file_name + '.pkl', 'wb') as opt_file: | |
pickle.dump(opt, opt_file) | |
def update_options_from_file(self, parser, opt): | |
new_opt = self.load_options(opt) | |
for k, v in sorted(vars(opt).items()): | |
if hasattr(new_opt, k) and v != getattr(new_opt, k): | |
new_val = getattr(new_opt, k) | |
parser.set_defaults(**{k: new_val}) | |
return parser | |
def load_options(self, opt): | |
file_name = self.option_file_path(opt, makedir=False) | |
new_opt = pickle.load(open(file_name + '.pkl', 'rb')) | |
return new_opt | |
def parse(self, save=False): | |
opt = self.gather_options() | |
opt.isTrain = self.isTrain # scripts or test | |
# self.print_options(opt) | |
if opt.isTrain: | |
self.save_options(opt) | |
# Set semantic_nc based on the option. | |
# This will be convenient in many places | |
opt.semantic_nc = opt.label_nc + \ | |
(1 if opt.contain_dontcare_label else 0) + \ | |
(0 if opt.no_instance else 1) | |
# set gpu ids | |
str_ids = opt.gpu_ids.split(',') | |
opt.gpu_ids = [] | |
for str_id in str_ids: | |
id = int(str_id) | |
if id >= 0: | |
opt.gpu_ids.append(id) | |
if len(opt.gpu_ids) > 0: | |
torch.cuda.set_device(opt.gpu_ids[0]) | |
assert len(opt.gpu_ids) == 0 or opt.batchSize % len(opt.gpu_ids) == 0, \ | |
"Batch size %d is wrong. It must be a multiple of # GPUs %d." \ | |
% (opt.batchSize, len(opt.gpu_ids)) | |
self.opt = opt | |
return self.opt | |