File size: 8,566 Bytes
6d314be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from torch import nn

from models.CtrlHair.shape_branch.config import cfg as cfg_mask
from models.CtrlHair.shape_branch.solver import get_hair_face_code, get_new_shape, Solver as SolverMask
from models.Encoders import RotateModel
from models.Net import Net, get_segmentation
from models.sean_codes.models.pix2pix_model import Pix2PixModel, SEAN_OPT, encode_sean, decode_sean
from utils.image_utils import DilateErosion
from utils.save_utils import save_vis_mask, save_gen_image, save_latents


class Alignment(nn.Module):
    """
    Module for transferring the desired hair shape
    """

    def __init__(self, opts, latent_encoder=None, net=None):
        super().__init__()
        self.opts = opts
        self.latent_encoder = latent_encoder
        if not net:
            self.net = Net(self.opts)
        else:
            self.net = net

        self.sean_model = Pix2PixModel(SEAN_OPT)
        self.sean_model.eval()

        solver_mask = SolverMask(cfg_mask, device=self.opts.device, local_rank=-1, training=False)
        self.mask_generator = solver_mask.gen
        self.mask_generator.load_state_dict(torch.load('pretrained_models/ShapeAdaptor/mask_generator.pth'))

        self.rotate_model = RotateModel()
        self.rotate_model.load_state_dict(torch.load(self.opts.rotate_checkpoint)['model_state_dict'])
        self.rotate_model.to(self.opts.device).eval()

        self.dilate_erosion = DilateErosion(dilate_erosion=self.opts.smooth, device=self.opts.device)
        self.to_bisenet = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))

    @torch.inference_mode()
    def shape_module(self, im_name1: str, im_name2: str, name_to_embed, only_target=True, **kwargs):
        device = self.opts.device

        # load images
        img1_in = name_to_embed[im_name1]['image_256']
        img2_in = name_to_embed[im_name2]['image_256']

        # load latents
        latent_W_1 = name_to_embed[im_name1]["W"]
        latent_W_2 = name_to_embed[im_name2]["W"]

        # load masks
        inp_mask1 = name_to_embed[im_name1]['mask']
        inp_mask2 = name_to_embed[im_name2]['mask']

        # Rotate stage
        if img1_in is not img2_in:
            rotate_to = self.rotate_model(latent_W_2[:, :6], latent_W_1[:, :6])
            rotate_to = torch.cat((rotate_to, latent_W_2[:, 6:]), dim=1)
            I_rot, _ = self.net.generator([rotate_to], input_is_latent=True, return_latents=False)

            I_rot_to_seg = ((I_rot + 1) / 2).clip(0, 1)
            I_rot_to_seg = self.to_bisenet(I_rot_to_seg)
            rot_mask = get_segmentation(I_rot_to_seg)
        else:
            I_rot = None
            rot_mask = inp_mask2

        # Shape Adaptor
        if img1_in is not img2_in:
            face_1, hair_1 = get_hair_face_code(self.mask_generator, inp_mask1[0, 0, ...])
            face_2, hair_2 = get_hair_face_code(self.mask_generator, rot_mask[0, 0, ...])

            target_mask = get_new_shape(self.mask_generator, face_1, hair_2)[None, None]
        else:
            target_mask = inp_mask1

        # Hair mask
        hair_mask_target = torch.where(target_mask == 13, torch.ones_like(target_mask, device=device),
                                       torch.zeros_like(target_mask, device=device))

        if self.opts.save_all:
            exp_name = exp_name if (exp_name := kwargs.get('exp_name')) is not None else ""
            output_dir = self.opts.save_all_dir / exp_name
            if I_rot is not None:
                save_gen_image(output_dir, 'Shape', f'{im_name2}_rotate_to_{im_name1}.png', I_rot)
            save_vis_mask(output_dir, 'Shape', f'mask_{im_name1}.png', inp_mask1)
            save_vis_mask(output_dir, 'Shape', f'mask_{im_name2}.png', inp_mask2)
            save_vis_mask(output_dir, 'Shape', f'mask_{im_name2}_rotate_to_{im_name1}.png', rot_mask)
            save_vis_mask(output_dir, 'Shape', f'mask_{im_name1}_{im_name2}_target.png', target_mask)

        if only_target:
            return {'HM_X': hair_mask_target}
        else:
            hair_mask1 = torch.where(inp_mask1 == 13, torch.ones_like(inp_mask1, device=device),
                                     torch.zeros_like(inp_mask1, device=device))
            hair_mask2 = torch.where(inp_mask2 == 13, torch.ones_like(inp_mask2, device=device),
                                     torch.zeros_like(inp_mask2, device=device))

            return inp_mask1, hair_mask1, inp_mask2, hair_mask2, target_mask, hair_mask_target

    @torch.inference_mode()
    def align_images(self, im_name1, im_name2, name_to_embed, **kwargs):
        # load images
        img1_in = name_to_embed[im_name1]['image_256']
        img2_in = name_to_embed[im_name2]['image_256']

        # load latents
        latent_S_1, latent_F_1 = name_to_embed[im_name1]["S"], name_to_embed[im_name1]["F"]
        latent_S_2, latent_F_2 = name_to_embed[im_name2]["S"], name_to_embed[im_name2]["F"]

        # Shape Module
        if img1_in is img2_in:
            hair_mask_target = self.shape_module(im_name1, im_name2, name_to_embed, only_target=True, **kwargs)['HM_X']
            return {'latent_F_align': latent_F_1, 'HM_X': hair_mask_target}

        inp_mask1, hair_mask1, inp_mask2, hair_mask2, target_mask, hair_mask_target = (
            self.shape_module(im_name1, im_name2, name_to_embed, only_target=False, **kwargs)
        )

        images = torch.cat([img1_in, img2_in], dim=0)
        labels = torch.cat([inp_mask1, inp_mask2], dim=0)

        # SEAN for inpaint
        img1_code, img2_code = encode_sean(self.sean_model, images, labels)

        gen1_sean = decode_sean(self.sean_model, img1_code.unsqueeze(0), target_mask)
        gen2_sean = decode_sean(self.sean_model, img2_code.unsqueeze(0), target_mask)

        # Encoding result in F from E4E
        enc_imgs = self.latent_encoder([gen1_sean, gen2_sean])
        intermediate_align, latent_inter = enc_imgs["F"][0].unsqueeze(0), enc_imgs["W"][0].unsqueeze(0)
        latent_F_out_new, latent_out = enc_imgs["F"][1].unsqueeze(0), enc_imgs["W"][1].unsqueeze(0)

        # Alignment of F space
        masks = [
            1 - (1 - hair_mask1) * (1 - hair_mask_target),
            hair_mask_target,
            hair_mask2 * hair_mask_target
        ]
        masks = torch.cat(masks, dim=0)
        # masks = T.functional.resize(masks, (1024, 1024), interpolation=T.InterpolationMode.NEAREST)

        dilate, erosion = self.dilate_erosion.mask(masks)
        free_mask = [
            dilate[0],
            erosion[1],
            erosion[2]
        ]
        free_mask = torch.stack(free_mask, dim=0)
        free_mask_down_32 = F.interpolate(free_mask.float(), size=(32, 32), mode='bicubic')
        interpolation_low = 1 - free_mask_down_32

        latent_F_align = intermediate_align + interpolation_low[0] * (latent_F_1 - intermediate_align)
        latent_F_align = latent_F_out_new + interpolation_low[1] * (latent_F_align - latent_F_out_new)
        latent_F_align = latent_F_2 + interpolation_low[2] * (latent_F_align - latent_F_2)

        if self.opts.save_all:
            exp_name = exp_name if (exp_name := kwargs.get('exp_name')) is not None else ""
            output_dir = self.opts.save_all_dir / exp_name
            save_gen_image(output_dir, 'Align', f'{im_name1}_{im_name2}_SEAN.png', gen1_sean)
            save_gen_image(output_dir, 'Align', f'{im_name2}_{im_name1}_SEAN.png', gen2_sean)

            img1_e4e = self.net.generator([latent_inter], input_is_latent=True, return_latents=False, start_layer=4,
                                          end_layer=8, layer_in=intermediate_align)[0]
            img2_e4e = self.net.generator([latent_out], input_is_latent=True, return_latents=False, start_layer=4,
                                          end_layer=8, layer_in=latent_F_out_new)[0]

            save_gen_image(output_dir, 'Align', f'{im_name1}_{im_name2}_e4e.png', img1_e4e)
            save_gen_image(output_dir, 'Align', f'{im_name2}_{im_name1}_e4e.png', img2_e4e)

            gen_im, _ = self.net.generator([latent_S_1], input_is_latent=True, return_latents=False, start_layer=4,
                                           end_layer=8, layer_in=latent_F_align)

            save_gen_image(output_dir, 'Align', f'{im_name1}_{im_name2}_output.png', gen_im)
            save_latents(output_dir, 'Align', f'{im_name1}_{im_name2}_F.npz', latent_F_align=latent_F_align)

        return {'latent_F_align': latent_F_align, 'HM_X': hair_mask_target}