Spaces:
Build error
Build error
File size: 12,153 Bytes
6d314be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import argparse
import os
import sys
from argparse import Namespace
from pathlib import Path
from tempfile import TemporaryDirectory
import numpy as np
import torch
import torch.nn.functional as F
import wandb
from PIL import Image
from joblib import Parallel, delayed
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T
from tqdm.auto import tqdm
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from models.Encoders import ClipBlendingModel as BlendingModel
from models.Net import Net
from models.face_parsing.model import BiSeNet, seg_mean, seg_std
from utils.bicubic import BicubicDownSample
from utils.image_utils import DilateErosion
from utils.train import toggle_grad, WandbLogger, image_grid, seed_everything, get_fid_calc
class Trainer:
def __init__(self,
model=None,
optimizer=None,
scheduler=None,
train_dataloader=None,
test_dataloader=None,
logger=None,
):
self.model = model
self.optimizer = optimizer
self.scheduler = scheduler
self.train_dataloader = train_dataloader
self.test_dataloader = test_dataloader
self.logger = logger
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.dilate_erosion = DilateErosion(device=self.device)
if self.model is not None:
self.fid_calc = get_fid_calc('input/fid.pkl', args.fid_dataset)
self.net = Net(Namespace(size=1024, ckpt='pretrained_models/StyleGAN/ffhq.pt', channel_multiplier=2, latent=512,
n_mlp=8, device=self.device))
self.seg = BiSeNet(n_classes=16)
self.seg.to(self.device)
self.seg.eval()
self.seg.load_state_dict(torch.load('pretrained_models/BiSeNet/seg.pth'))
toggle_grad(self.seg, False)
toggle_grad(self.net.generator, False)
self.downsample_512 = BicubicDownSample(factor=2)
self.downsample_256 = BicubicDownSample(factor=4)
self.downsample_128 = BicubicDownSample(factor=8)
self.best_loss = float('+inf')
self.cur_iter = 0
@torch.no_grad()
def generate_mask(self, I):
IM = (self.downsample_512((I + 1) / 2) - seg_mean) / seg_std
down_seg, _, _ = self.seg(IM)
current_mask = torch.argmax(down_seg, dim=1).long().float()
HM_X = torch.where(current_mask == 10, torch.ones_like(current_mask), torch.zeros_like(current_mask))
HM_X = F.interpolate(HM_X.unsqueeze(1), size=(256, 256), mode='nearest')
HM_XD, HM_XE = self.dilate_erosion.mask(HM_X)
return HM_XD, HM_XE
def save_model(self, name, save_online=True):
with TemporaryDirectory() as tmp_dir:
model_state_dict = self.model.state_dict()
# delete pretrained clip
for key in list(model_state_dict.keys()):
if key.startswith("clip_model."):
del model_state_dict[key]
torch.save({'model_state_dict': model_state_dict}, f'{tmp_dir}/{name}.pth')
self.logger.save(f'{tmp_dir}/{name}.pth', save_online)
def calc_loss(self, I_gen, I_face, I_color, mask_face, mask_hair, gen_hair):
gen_embed = self.model.get_image_embed(I_gen * mask_face)
gt_embed = self.model.get_image_embed(I_face * mask_face)
face_loss = (1 - F.cosine_similarity(gen_embed, gt_embed)).mean()
gen_embed = self.model.get_image_embed(I_gen * mask_hair)
gt_embed = self.model.get_image_embed(I_color * mask_hair)
hair_loss = (1 - F.cosine_similarity(gen_embed, gt_embed)).mean()
losses = {'face loss': face_loss, 'hair loss': hair_loss, 'loss': face_loss + hair_loss}
return losses['loss'], losses
def train_one_epoch(self):
self.model.to(self.device).train()
for batch in tqdm(self.train_dataloader):
color_s, align_s, align_f, color_i, face_i, target_mask, HM_3E, HM_XE = map(lambda x: x.to(self.device),
batch)
bsz = color_s.size(0)
blend_s = self.model(align_s[:, 6:], color_s[:, 6:], face_i * target_mask, color_i * HM_3E)
latent_in = torch.cat((torch.zeros(bsz, 6, 512, device=self.device), blend_s), axis=1)
I_G, _ = self.net.generator([latent_in], input_is_latent=True, return_latents=False, start_layer=4,
end_layer=8, layer_in=align_f)
loss, info = self.calc_loss(self.downsample_256(I_G), face_i, color_i, target_mask, HM_3E, HM_XE)
self.optimizer.zero_grad()
loss.backward()
total_norm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5)
self.optimizer.step()
self.logger.next_step()
for key, val in info.items():
self.logger.log(key, val.item())
self.logger.log('grad', total_norm.item())
self.cur_iter += 1
@torch.no_grad()
def validate(self):
self.model.to(self.device).eval()
sum_losses = lambda x, y: {key: val + x.get(key, 0) for key, val in y.items()}
files = []
losses = {}
to_299 = T.Resize((299, 299))
images_to_fid = []
for batch in tqdm(self.test_dataloader):
color_s, align_s, align_f, color_i, face_i, target_mask, HM_3E, HM_XE = map(lambda x: x.to(self.device),
batch)
bsz = color_s.size(0)
blend_s = self.model(align_s[:, 6:], color_s[:, 6:], face_i * target_mask, color_i * HM_3E)
latent_in = torch.cat((torch.zeros(bsz, 6, 512, device=self.device), blend_s), axis=1)
I_G, _ = self.net.generator([latent_in], input_is_latent=True, return_latents=False, start_layer=4,
end_layer=8, layer_in=align_f)
_, info = self.calc_loss(self.downsample_256(I_G), face_i, color_i, target_mask, HM_3E, HM_XE)
losses = sum_losses(losses, info)
for k in range(bsz):
files.append([color_i[k].cpu(), face_i[k].cpu(), self.downsample_256(I_G)[k].cpu()])
images_to_fid.append(to_299((I_G + 1) / 2).clip(0, 1))
losses['FID CLIP'] = self.fid_calc(torch.cat(images_to_fid))
for key, val in losses.items():
if key != 'FID CLIP':
val = val.item() / len(self.test_dataloader)
self.logger.log(f'val {key}', val)
np.random.seed(1927)
idxs = np.random.choice(len(files), size=100, replace=False)
images_to_log = [
image_grid([T.functional.to_pil_image(((img + 1) / 2).clamp(0, 1)) for img in files[idx]], 1, 3) for idx in
idxs]
self.logger.log('val images', [wandb.Image(image) for image in images_to_log])
return losses['loss']
def train_loop(self, epochs):
self.validate()
for epoch in range(epochs):
self.train_one_epoch()
loss = self.validate()
self.save_model('last', save_online=False)
if loss <= self.best_loss:
self.best_loss = loss
self.save_model(f'best', save_online=False)
def prepare_item(exp, path):
im1, im2, im3 = exp
try:
color_path = os.path.join(path, 'FS', f'{im3}.npz')
Color_S = torch.from_numpy(np.load(color_path)['latent_in']).squeeze(0)
face_path = os.path.join(path, 'FS', f'{im1}.npz')
Align_S = torch.from_numpy(np.load(face_path)['latent_in']).squeeze(0)
Color_I = T.functional.normalize(T.functional.to_tensor(
Image.open(os.path.join(args.FFHQ, f'{im3}.png'))
), [0.5], [0.5])
Face_I = T.functional.normalize(T.functional.to_tensor(
Image.open(os.path.join(args.FFHQ, f'{im1}.png'))
), [0.5], [0.5])
align_path = os.path.join(path, 'Align')
data = np.load(
os.path.join(align_path, f'{im1}_{im3}.npz')
)
Align_F = torch.from_numpy(data['latent_F']).squeeze(0)
return (Color_S, Align_S, Align_F, Color_I, Face_I)
except Exception as e:
print(e, file=sys.stderr)
return None
class Blending_dataset(Dataset):
def __init__(self, exps, path, net_trainer):
super().__init__()
downsample_256 = BicubicDownSample(factor=4)
data = Parallel(n_jobs=-1)(
delayed(prepare_item)(exp, path) for (p1, p2, p3) in tqdm(exps) for exp in [(p1, p2, p3), (p1, p3, p2)])
data = [elem for elem in data if elem is not None]
print(f'Load: {len(data)}/{2 * len(exps)}', file=sys.stderr)
tmp_dataloader = DataLoader(data, batch_size=24, pin_memory=False, shuffle=False)
self.items = []
with torch.no_grad():
for (Color_S, Align_S, Align_F, Color_I, Face_I) in tqdm(tmp_dataloader):
HM_3D, HM_3E = net_trainer.generate_mask(Color_I.to('cuda'))
HM_1D, _ = net_trainer.generate_mask(Face_I.to('cuda'))
I_X, _ = net_trainer.net.generator([Align_S.to('cuda')], input_is_latent=True, return_latents=False,
start_layer=4,
end_layer=8, layer_in=Align_F.to('cuda'))
HM_XD, HM_XE = net_trainer.generate_mask(I_X)
target_mask = ((1 - HM_1D) * (1 - HM_3D) * (1 - HM_XD)).cpu()
HM_3E = HM_3E.cpu()
HM_XE = HM_XE
self.items.extend(
[item for item in zip(*list(map(lambda x: [item.squeeze(0) for item in torch.split(x, 1)],
(Color_S,
Align_S,
Align_F,
downsample_256(Color_I.to('cuda')).cpu(),
downsample_256(Face_I.to('cuda')).cpu(),
target_mask, HM_3E, HM_XE)))
) if item[-2].any() and item[-1].any()]
)
print(f'dataset: {len(self.items)}/{len(data)}', file=sys.stderr)
def __len__(self):
return len(self.items)
def __getitem__(self, idx):
return self.items[idx]
def main(args):
seed_everything()
exps = []
with open(os.path.join(args.dataset, 'dataset.exps'), 'r') as file:
for exp in file.readlines():
exps.append(list(map(lambda x: x.replace('.png', ''), exp.split())))
X_train, X_test = train_test_split(exps, test_size=512, random_state=42)
net_trainer = Trainer()
train_dataset = Blending_dataset(X_train, args.dataset, net_trainer)
test_dataset = Blending_dataset(X_test, args.dataset, net_trainer)
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True, drop_last=True)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
logger = WandbLogger(name=args.name_run, project='Barbershop-Blending')
logger.start_logging()
logger.save(__file__)
model = BlendingModel()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=0.000001)
trainer = Trainer(model, optimizer, None, train_dataloader, test_dataloader, logger)
trainer.train_loop(1000)
logger.wandb.finish()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Blending trainer')
parser.add_argument('--name_run', type=str, default='test')
parser.add_argument('--dataset', type=Path, default='input/blending_dataset')
parser.add_argument('--FFHQ', type=Path)
parser.add_argument('--fid_dataset', type=str, default='input')
args = parser.parse_args()
main(args)
|