File size: 12,153 Bytes
6d314be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import argparse
import os
import sys
from argparse import Namespace
from pathlib import Path
from tempfile import TemporaryDirectory

import numpy as np
import torch
import torch.nn.functional as F
import wandb
from PIL import Image
from joblib import Parallel, delayed
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T
from tqdm.auto import tqdm

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from models.Encoders import ClipBlendingModel as BlendingModel
from models.Net import Net
from models.face_parsing.model import BiSeNet, seg_mean, seg_std
from utils.bicubic import BicubicDownSample
from utils.image_utils import DilateErosion
from utils.train import toggle_grad, WandbLogger, image_grid, seed_everything, get_fid_calc


class Trainer:
    def __init__(self,
                 model=None,
                 optimizer=None,
                 scheduler=None,
                 train_dataloader=None,
                 test_dataloader=None,
                 logger=None,
                 ):
        self.model = model
        self.optimizer = optimizer
        self.scheduler = scheduler
        self.train_dataloader = train_dataloader
        self.test_dataloader = test_dataloader
        self.logger = logger
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.dilate_erosion = DilateErosion(device=self.device)

        if self.model is not None:
            self.fid_calc = get_fid_calc('input/fid.pkl', args.fid_dataset)

        self.net = Net(Namespace(size=1024, ckpt='pretrained_models/StyleGAN/ffhq.pt', channel_multiplier=2, latent=512,
                                 n_mlp=8, device=self.device))
        self.seg = BiSeNet(n_classes=16)
        self.seg.to(self.device)
        self.seg.eval()

        self.seg.load_state_dict(torch.load('pretrained_models/BiSeNet/seg.pth'))
        toggle_grad(self.seg, False)
        toggle_grad(self.net.generator, False)

        self.downsample_512 = BicubicDownSample(factor=2)
        self.downsample_256 = BicubicDownSample(factor=4)
        self.downsample_128 = BicubicDownSample(factor=8)

        self.best_loss = float('+inf')
        self.cur_iter = 0

    @torch.no_grad()
    def generate_mask(self, I):
        IM = (self.downsample_512((I + 1) / 2) - seg_mean) / seg_std
        down_seg, _, _ = self.seg(IM)
        current_mask = torch.argmax(down_seg, dim=1).long().float()
        HM_X = torch.where(current_mask == 10, torch.ones_like(current_mask), torch.zeros_like(current_mask))
        HM_X = F.interpolate(HM_X.unsqueeze(1), size=(256, 256), mode='nearest')

        HM_XD, HM_XE = self.dilate_erosion.mask(HM_X)
        return HM_XD, HM_XE

    def save_model(self, name, save_online=True):
        with TemporaryDirectory() as tmp_dir:
            model_state_dict = self.model.state_dict()

            # delete pretrained clip
            for key in list(model_state_dict.keys()):
                if key.startswith("clip_model."):
                    del model_state_dict[key]

            torch.save({'model_state_dict': model_state_dict}, f'{tmp_dir}/{name}.pth')
            self.logger.save(f'{tmp_dir}/{name}.pth', save_online)

    def calc_loss(self, I_gen, I_face, I_color, mask_face, mask_hair, gen_hair):
        gen_embed = self.model.get_image_embed(I_gen * mask_face)
        gt_embed = self.model.get_image_embed(I_face * mask_face)
        face_loss = (1 - F.cosine_similarity(gen_embed, gt_embed)).mean()

        gen_embed = self.model.get_image_embed(I_gen * mask_hair)
        gt_embed = self.model.get_image_embed(I_color * mask_hair)
        hair_loss = (1 - F.cosine_similarity(gen_embed, gt_embed)).mean()

        losses = {'face loss': face_loss, 'hair loss': hair_loss, 'loss': face_loss + hair_loss}
        return losses['loss'], losses

    def train_one_epoch(self):
        self.model.to(self.device).train()
        for batch in tqdm(self.train_dataloader):
            color_s, align_s, align_f, color_i, face_i, target_mask, HM_3E, HM_XE = map(lambda x: x.to(self.device),
                                                                                        batch)
            bsz = color_s.size(0)

            blend_s = self.model(align_s[:, 6:], color_s[:, 6:], face_i * target_mask, color_i * HM_3E)
            latent_in = torch.cat((torch.zeros(bsz, 6, 512, device=self.device), blend_s), axis=1)
            I_G, _ = self.net.generator([latent_in], input_is_latent=True, return_latents=False, start_layer=4,
                                        end_layer=8, layer_in=align_f)

            loss, info = self.calc_loss(self.downsample_256(I_G), face_i, color_i, target_mask, HM_3E, HM_XE)

            self.optimizer.zero_grad()
            loss.backward()

            total_norm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5)
            self.optimizer.step()

            self.logger.next_step()
            for key, val in info.items():
                self.logger.log(key, val.item())
            self.logger.log('grad', total_norm.item())
            self.cur_iter += 1

    @torch.no_grad()
    def validate(self):
        self.model.to(self.device).eval()

        sum_losses = lambda x, y: {key: val + x.get(key, 0) for key, val in y.items()}
        files = []
        losses = {}
        to_299 = T.Resize((299, 299))
        images_to_fid = []

        for batch in tqdm(self.test_dataloader):
            color_s, align_s, align_f, color_i, face_i, target_mask, HM_3E, HM_XE = map(lambda x: x.to(self.device),
                                                                                        batch)
            bsz = color_s.size(0)

            blend_s = self.model(align_s[:, 6:], color_s[:, 6:], face_i * target_mask, color_i * HM_3E)
            latent_in = torch.cat((torch.zeros(bsz, 6, 512, device=self.device), blend_s), axis=1)
            I_G, _ = self.net.generator([latent_in], input_is_latent=True, return_latents=False, start_layer=4,
                                        end_layer=8, layer_in=align_f)

            _, info = self.calc_loss(self.downsample_256(I_G), face_i, color_i, target_mask, HM_3E, HM_XE)
            losses = sum_losses(losses, info)
            for k in range(bsz):
                files.append([color_i[k].cpu(), face_i[k].cpu(), self.downsample_256(I_G)[k].cpu()])

            images_to_fid.append(to_299((I_G + 1) / 2).clip(0, 1))

        losses['FID CLIP'] = self.fid_calc(torch.cat(images_to_fid))
        for key, val in losses.items():
            if key != 'FID CLIP':
                val = val.item() / len(self.test_dataloader)
            self.logger.log(f'val {key}', val)

        np.random.seed(1927)
        idxs = np.random.choice(len(files), size=100, replace=False)
        images_to_log = [
            image_grid([T.functional.to_pil_image(((img + 1) / 2).clamp(0, 1)) for img in files[idx]], 1, 3) for idx in
            idxs]
        self.logger.log('val images', [wandb.Image(image) for image in images_to_log])

        return losses['loss']

    def train_loop(self, epochs):
        self.validate()
        for epoch in range(epochs):
            self.train_one_epoch()
            loss = self.validate()

            self.save_model('last', save_online=False)
            if loss <= self.best_loss:
                self.best_loss = loss
                self.save_model(f'best', save_online=False)


def prepare_item(exp, path):
    im1, im2, im3 = exp

    try:
        color_path = os.path.join(path, 'FS', f'{im3}.npz')
        Color_S = torch.from_numpy(np.load(color_path)['latent_in']).squeeze(0)

        face_path = os.path.join(path, 'FS', f'{im1}.npz')
        Align_S = torch.from_numpy(np.load(face_path)['latent_in']).squeeze(0)

        Color_I = T.functional.normalize(T.functional.to_tensor(
            Image.open(os.path.join(args.FFHQ, f'{im3}.png'))
        ), [0.5], [0.5])
        Face_I = T.functional.normalize(T.functional.to_tensor(
            Image.open(os.path.join(args.FFHQ, f'{im1}.png'))
        ), [0.5], [0.5])

        align_path = os.path.join(path, 'Align')
        data = np.load(
            os.path.join(align_path, f'{im1}_{im3}.npz')
        )
        Align_F = torch.from_numpy(data['latent_F']).squeeze(0)

        return (Color_S, Align_S, Align_F, Color_I, Face_I)
    except Exception as e:
        print(e, file=sys.stderr)
        return None


class Blending_dataset(Dataset):
    def __init__(self, exps, path, net_trainer):
        super().__init__()
        downsample_256 = BicubicDownSample(factor=4)
        data = Parallel(n_jobs=-1)(
            delayed(prepare_item)(exp, path) for (p1, p2, p3) in tqdm(exps) for exp in [(p1, p2, p3), (p1, p3, p2)])
        data = [elem for elem in data if elem is not None]
        print(f'Load: {len(data)}/{2 * len(exps)}', file=sys.stderr)

        tmp_dataloader = DataLoader(data, batch_size=24, pin_memory=False, shuffle=False)

        self.items = []
        with torch.no_grad():
            for (Color_S, Align_S, Align_F, Color_I, Face_I) in tqdm(tmp_dataloader):
                HM_3D, HM_3E = net_trainer.generate_mask(Color_I.to('cuda'))

                HM_1D, _ = net_trainer.generate_mask(Face_I.to('cuda'))
                I_X, _ = net_trainer.net.generator([Align_S.to('cuda')], input_is_latent=True, return_latents=False,
                                                   start_layer=4,
                                                   end_layer=8, layer_in=Align_F.to('cuda'))
                HM_XD, HM_XE = net_trainer.generate_mask(I_X)

                target_mask = ((1 - HM_1D) * (1 - HM_3D) * (1 - HM_XD)).cpu()
                HM_3E = HM_3E.cpu()
                HM_XE = HM_XE
                self.items.extend(
                    [item for item in zip(*list(map(lambda x: [item.squeeze(0) for item in torch.split(x, 1)],
                                                    (Color_S,
                                                     Align_S,
                                                     Align_F,
                                                     downsample_256(Color_I.to('cuda')).cpu(),
                                                     downsample_256(Face_I.to('cuda')).cpu(),
                                                     target_mask, HM_3E, HM_XE)))
                                          ) if item[-2].any() and item[-1].any()]
                )

        print(f'dataset: {len(self.items)}/{len(data)}', file=sys.stderr)

    def __len__(self):
        return len(self.items)

    def __getitem__(self, idx):
        return self.items[idx]


def main(args):
    seed_everything()

    exps = []
    with open(os.path.join(args.dataset, 'dataset.exps'), 'r') as file:
        for exp in file.readlines():
            exps.append(list(map(lambda x: x.replace('.png', ''), exp.split())))

    X_train, X_test = train_test_split(exps, test_size=512, random_state=42)

    net_trainer = Trainer()
    train_dataset = Blending_dataset(X_train, args.dataset, net_trainer)
    test_dataset = Blending_dataset(X_test, args.dataset, net_trainer)

    train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True, drop_last=True)
    test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)

    logger = WandbLogger(name=args.name_run, project='Barbershop-Blending')
    logger.start_logging()
    logger.save(__file__)

    model = BlendingModel()
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=0.000001)

    trainer = Trainer(model, optimizer, None, train_dataloader, test_dataloader, logger)

    trainer.train_loop(1000)

    logger.wandb.finish()


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Blending trainer')
    parser.add_argument('--name_run', type=str, default='test')
    parser.add_argument('--dataset', type=Path, default='input/blending_dataset')
    parser.add_argument('--FFHQ', type=Path)
    parser.add_argument('--fid_dataset', type=str, default='input')
    args = parser.parse_args()

    main(args)