File size: 18,572 Bytes
6d314be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import os

import numpy as np
import torch
from torch import nn
from torchvision import transforms

from models.CtrlHair.external_code.face_parsing.my_parsing_util import FaceParsing_tensor
from models.stylegan2.model import Generator
from utils.drive import download_weight

transform_to_256 = transforms.Compose([
    transforms.Resize((256, 256)),
])

__all__ = ['Net', 'iresnet18', 'iresnet34', 'iresnet50', 'iresnet100', 'iresnet200', 'FeatureEncoderMult',
           'IBasicBlock', 'conv1x1', 'get_segmentation']


class Net(nn.Module):

    def __init__(self, opts):
        super(Net, self).__init__()
        self.opts = opts
        self.generator = Generator(opts.size, opts.latent, opts.n_mlp, channel_multiplier=opts.channel_multiplier)
        self.cal_layer_num()
        self.load_weights()
        self.load_PCA_model()
        FaceParsing_tensor.parsing_img()

    def load_weights(self):
        if not os.path.exists(self.opts.ckpt):
            print('Downloading StyleGAN2 checkpoint: {}'.format(self.opts.ckpt))
            download_weight(self.opts.ckpt)

        print('Loading StyleGAN2 from checkpoint: {}'.format(self.opts.ckpt))
        checkpoint = torch.load(self.opts.ckpt)
        device = self.opts.device
        self.generator.load_state_dict(checkpoint['g_ema'])
        self.latent_avg = checkpoint['latent_avg']
        self.generator.to(device)
        self.latent_avg = self.latent_avg.to(device)

        for param in self.generator.parameters():
            param.requires_grad = False
        self.generator.eval()

    def build_PCA_model(self, PCA_path):

        with torch.no_grad():
            latent = torch.randn((1000000, 512), dtype=torch.float32)
            # latent = torch.randn((10000, 512), dtype=torch.float32)
            self.generator.style.cpu()
            pulse_space = torch.nn.LeakyReLU(5)(self.generator.style(latent)).numpy()
            self.generator.style.to(self.opts.device)

        from utils.PCA_utils import IPCAEstimator

        transformer = IPCAEstimator(512)
        X_mean = pulse_space.mean(0)
        transformer.fit(pulse_space - X_mean)
        X_comp, X_stdev, X_var_ratio = transformer.get_components()
        np.savez(PCA_path, X_mean=X_mean, X_comp=X_comp, X_stdev=X_stdev, X_var_ratio=X_var_ratio)

    def load_PCA_model(self):
        device = self.opts.device

        PCA_path = self.opts.ckpt[:-3] + '_PCA.npz'

        if not os.path.isfile(PCA_path):
            self.build_PCA_model(PCA_path)

        PCA_model = np.load(PCA_path)
        self.X_mean = torch.from_numpy(PCA_model['X_mean']).float().to(device)
        self.X_comp = torch.from_numpy(PCA_model['X_comp']).float().to(device)
        self.X_stdev = torch.from_numpy(PCA_model['X_stdev']).float().to(device)

    # def make_noise(self):
    #     noises_single = self.generator.make_noise()
    #     noises = []
    #     for noise in noises_single:
    #         noises.append(noise.repeat(1, 1, 1, 1).normal_())
    #
    #     return noises

    def cal_layer_num(self):
        if self.opts.size == 1024:
            self.layer_num = 18
        elif self.opts.size == 512:
            self.layer_num = 16
        elif self.opts.size == 256:
            self.layer_num = 14

        self.S_index = self.layer_num - 11

        return

    def cal_p_norm_loss(self, latent_in):
        latent_p_norm = (torch.nn.LeakyReLU(negative_slope=5)(latent_in) - self.X_mean).bmm(
            self.X_comp.T.unsqueeze(0)) / self.X_stdev
        p_norm_loss = self.opts.p_norm_lambda * (latent_p_norm.pow(2).mean())
        return p_norm_loss

    def cal_l_F(self, latent_F, F_init):
        return self.opts.l_F_lambda * (latent_F - F_init).pow(2).mean()


def get_segmentation(img_rgb, resize=True):
    parsing, _ = FaceParsing_tensor.parsing_img(img_rgb)
    parsing = FaceParsing_tensor.swap_parsing_label_to_celeba_mask(parsing)
    mask_img = parsing.long()[None, None, ...]
    if resize:
        mask_img = transforms.functional.resize(mask_img, (256, 256),
                                                interpolation=transforms.InterpolationMode.NEAREST)
    return mask_img


fs_kernals = {
    0: (12, 12),
    1: (12, 12),
    2: (6, 6),
    3: (6, 6),
    4: (3, 3),
    5: (3, 3),
    6: (3, 3),
    7: (3, 3),
}

fs_strides = {
    0: (7, 7),
    1: (7, 7),
    2: (4, 4),
    3: (4, 4),
    4: (2, 2),
    5: (2, 2),
    6: (1, 1),
    7: (1, 1),
}


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=3,
                     stride=stride,
                     padding=dilation,
                     groups=groups,
                     bias=False,
                     dilation=dilation)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=1,
                     stride=stride,
                     bias=False)


class IBasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None,
                 groups=1, base_width=64, dilation=1):
        super(IBasicBlock, self).__init__()
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05, )
        self.conv1 = conv3x3(inplanes, planes)
        self.bn2 = nn.BatchNorm2d(planes, eps=1e-05, )
        self.prelu = nn.PReLU(planes)
        self.conv2 = conv3x3(planes, planes, stride)
        self.bn3 = nn.BatchNorm2d(planes, eps=1e-05, )
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x
        out = self.bn1(x)
        out = self.conv1(out)
        out = self.bn2(out)
        out = self.prelu(out)
        out = self.conv2(out)
        out = self.bn3(out)
        if self.downsample is not None:
            identity = self.downsample(x)
        out += identity
        return out


class IResNet(nn.Module):
    fc_scale = 7 * 7

    def __init__(self,
                 block, layers, dropout=0, num_features=512, zero_init_residual=False,
                 groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False):
        super(IResNet, self).__init__()
        self.fp16 = fp16
        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05)
        self.prelu = nn.PReLU(self.inplanes)
        self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=2,
                                       dilate=replace_stride_with_dilation[2])
        self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05, )
        self.dropout = nn.Dropout(p=dropout, inplace=True)
        self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features)
        self.features = nn.BatchNorm1d(num_features, eps=1e-05)
        nn.init.constant_(self.features.weight, 1.0)
        self.features.weight.requires_grad = False

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.normal_(m.weight, 0, 0.1)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, IBasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ),
            )
        layers = []
        layers.append(
            block(self.inplanes, planes, stride, downsample, self.groups,
                  self.base_width, previous_dilation))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(self.inplanes,
                      planes,
                      groups=self.groups,
                      base_width=self.base_width,
                      dilation=self.dilation))

        return nn.Sequential(*layers)

    def forward(self, x, return_features=False):
        out = []
        with torch.cuda.amp.autocast(self.fp16):
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.prelu(x)
            x = self.layer1(x)
            out.append(x)
            x = self.layer2(x)
            out.append(x)
            x = self.layer3(x)
            out.append(x)
            x = self.layer4(x)
            out.append(x)
            x = self.bn2(x)
            x = torch.flatten(x, 1)
            x = self.dropout(x)
        x = self.fc(x.float() if self.fp16 else x)
        x = self.features(x)

        if return_features:
            out.append(x)
            return out
        return x


def _iresnet(arch, block, layers, pretrained, progress, **kwargs):
    model = IResNet(block, layers, **kwargs)
    if pretrained:
        raise ValueError()
    return model


def iresnet18(pretrained=False, progress=True, **kwargs):
    return _iresnet('iresnet18', IBasicBlock, [2, 2, 2, 2], pretrained,
                    progress, **kwargs)


def iresnet34(pretrained=False, progress=True, **kwargs):
    return _iresnet('iresnet34', IBasicBlock, [3, 4, 6, 3], pretrained,
                    progress, **kwargs)


def iresnet50(pretrained=False, progress=True, **kwargs):
    return _iresnet('iresnet50', IBasicBlock, [3, 4, 14, 3], pretrained,
                    progress, **kwargs)


def iresnet100(pretrained=False, progress=True, **kwargs):
    return _iresnet('iresnet100', IBasicBlock, [3, 13, 30, 3], pretrained,
                    progress, **kwargs)


def iresnet200(pretrained=False, progress=True, **kwargs):
    return _iresnet('iresnet200', IBasicBlock, [6, 26, 60, 6], pretrained,
                    progress, **kwargs)


class FeatureEncoder(nn.Module):
    def __init__(self, n_styles=18, opts=None, residual=False,
                 use_coeff=False, resnet_layer=None,
                 video_input=False, f_maps=512, stride=(1, 1)):
        super(FeatureEncoder, self).__init__()

        resnet50 = iresnet50()
        resnet50.load_state_dict(torch.load(opts.arcface_model_path))

        # input conv layer
        if video_input:
            self.conv = nn.Sequential(
                nn.Conv2d(6, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),
                *list(resnet50.children())[1:3]
            )
        else:
            self.conv = nn.Sequential(*list(resnet50.children())[:3])

        # define layers
        self.block_1 = list(resnet50.children())[3]  # 15-18
        self.block_2 = list(resnet50.children())[4]  # 10-14
        self.block_3 = list(resnet50.children())[5]  # 5-9
        self.block_4 = list(resnet50.children())[6]  # 1-4
        self.content_layer = nn.Sequential(
            nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
            nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),
            nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
            nn.PReLU(num_parameters=512),
            nn.Conv2d(512, 512, kernel_size=(3, 3), stride=stride, padding=(1, 1), bias=False),
            nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )

        self.avg_pool = nn.AdaptiveAvgPool2d((3, 3))
        self.styles = nn.ModuleList()
        for i in range(n_styles):
            self.styles.append(nn.Linear(960 * 9, 512))

    def apply_head(self, x):
        latents = []
        for i in range(len(self.styles)):
            latents.append(self.styles[i](x))
        out = torch.stack(latents, dim=1)
        return out

    def forward(self, x):
        latents = []
        features = []
        x = self.conv(x)
        x = self.block_1(x)
        features.append(self.avg_pool(x))
        x = self.block_2(x)
        features.append(self.avg_pool(x))
        x = self.block_3(x)
        content = self.content_layer(x)
        features.append(self.avg_pool(x))
        x = self.block_4(x)
        features.append(self.avg_pool(x))
        x = torch.cat(features, dim=1)
        x = x.view(x.size(0), -1)
        return self.apply_head(x), content


class FeatureEncoderMult(FeatureEncoder):
    def __init__(self, fs_layers=(5,), ranks=None, **kwargs):
        super().__init__(**kwargs)

        self.fs_layers = fs_layers
        self.content_layer = nn.ModuleList()
        self.ranks = ranks
        shift = 0 if max(fs_layers) <= 7 else 2
        scale = 1 if max(fs_layers) <= 7 else 2
        for i in range(len(fs_layers)):
            if ranks is not None:
                stride, kern = ranks_data[ranks[i] - shift]
                layer1 = nn.Sequential(
                    nn.BatchNorm2d(256 // scale, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
                    nn.Conv2d(256 // scale, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),
                    nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
                    nn.PReLU(num_parameters=512),
                    nn.Conv2d(512, 512, kernel_size=(fs_kernals[fs_layers[i] - shift][0], kern),
                              stride=(fs_strides[fs_layers[i] - shift][0], stride),
                              padding=(1, 1), bias=False),
                    nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                )
                layer2 = nn.Sequential(
                    nn.BatchNorm2d(256 // scale, eps=1e-05, momentum=0.1, affine=True,
                                   track_running_stats=True),
                    nn.Conv2d(256 // scale, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
                              bias=False),
                    nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
                                   track_running_stats=True),
                    nn.PReLU(num_parameters=512),
                    nn.Conv2d(512, 512, kernel_size=(kern, fs_kernals[fs_layers[i] - shift][1]),
                              stride=(stride, fs_strides[fs_layers[i] - shift][1]),
                              padding=(1, 1), bias=False),
                    nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
                                   track_running_stats=True)
                )
                layer = nn.ModuleList([layer1, layer2])
            else:
                layer = nn.Sequential(
                    nn.BatchNorm2d(256 // scale, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
                    nn.Conv2d(256 // scale, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),
                    nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
                    nn.PReLU(num_parameters=512),
                    nn.Conv2d(512, 512, kernel_size=fs_kernals[fs_layers[i] - shift],
                              stride=fs_strides[fs_layers[i] - shift],
                              padding=(1, 1), bias=False),
                    nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
                )
            self.content_layer.append(layer)

    def forward(self, x):
        x = transform_to_256(x)
        features = []
        content = []
        x = self.conv(x)
        x = self.block_1(x)
        features.append(self.avg_pool(x))
        x = self.block_2(x)
        if max(self.fs_layers) > 7:
            for layer in self.content_layer:
                if self.ranks is not None:
                    mat1 = layer[0](x)
                    mat2 = layer[1](x)
                    content.append(torch.matmul(mat1, mat2))
                else:
                    content.append(layer(x))
        features.append(self.avg_pool(x))
        x = self.block_3(x)
        if len(content) == 0:
            for layer in self.content_layer:
                if self.ranks is not None:
                    mat1 = layer[0](x)
                    mat2 = layer[1](x)
                    content.append(torch.matmul(mat1, mat2))
                else:
                    content.append(layer(x))
        features.append(self.avg_pool(x))
        x = self.block_4(x)
        features.append(self.avg_pool(x))
        x = torch.cat(features, dim=1)
        x = x.view(x.size(0), -1)
        return self.apply_head(x), content


def get_keys(d, name, key="state_dict"):
    if key in d:
        d = d[key]
    d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[: len(name) + 1] == name + '.'}
    return d_filt