File size: 18,286 Bytes
6d314be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright (c) 2021, InterDigital R&D France. All rights reserved.
#
# This source code is made available under the license found in the
# LICENSE.txt in the root directory of this source tree.

import cv2
import glob
import numpy as np
import os
import face_alignment
import torch

from PIL import Image, ImageFilter
from scipy import ndimage
from scipy.ndimage import gaussian_filter1d
from skimage import io
from torchvision import transforms, utils


def pil_to_cv2(pil_image):
    open_cv_image = np.array(pil_image) 
    return open_cv_image[:, :, ::-1].copy() 


def cv2_to_pil(open_cv_image):
    return Image.fromarray(open_cv_image[:, :, ::-1].copy())


def put_text(img, text):
    font                   = cv2.FONT_HERSHEY_SIMPLEX
    bottomLeftCornerOfText = (10,50)
    fontScale              = 1.5
    fontColor              = (255,255,0)
    lineType               = 2
    return cv2.putText(img, text, 
        bottomLeftCornerOfText, 
        font, 
        fontScale,
        fontColor,
        lineType)


# Compare frames in two directory
def compare_frames(save_dir, origin_dir, target_dir, strs='Original,Projected,Manipulated', dim=None):
    
    os.makedirs(save_dir, exist_ok=True)
    try:
        if not isinstance(target_dir, list):
            target_dir = [target_dir]
        image_list = glob.glob1(origin_dir,'frame*')
        image_list.sort()
        for name in image_list:
            img_l = []
            for idx, dir_path in enumerate([origin_dir] + list(target_dir)):
                img_1 = cv2.imread(dir_path  + name)
                img_1 = put_text(img_1, strs.split(',')[idx])
                img_l.append(img_1)
            img = np.concatenate(img_l, axis=1)
            cv2.imwrite(save_dir + name, img)
    except FileNotFoundError:
        pass


# Save frames into video
def create_video(image_folder, fps=24, video_format='.mp4', resize_ratio=1):
    
    video_name = os.path.dirname(image_folder) + video_format
    img_list = glob.glob1(image_folder,'frame*')
    img_list.sort()
    frame = cv2.imread(os.path.join(image_folder, img_list[0]))
    frame = cv2.resize(frame, (0,0), fx=resize_ratio, fy=resize_ratio) 
    height, width, layers = frame.shape
    if video_format == '.mp4':
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    elif video_format == '.avi':
        fourcc = cv2.VideoWriter_fourcc(*'XVID')
    video = cv2.VideoWriter(video_name, fourcc, fps, (width,height))
    for image_name in img_list:
        frame = cv2.imread(os.path.join(image_folder, image_name))
        frame = cv2.resize(frame, (0,0), fx=resize_ratio, fy=resize_ratio) 
        video.write(frame)


# Split video into frames
def video_to_frames(video_path, frame_path, img_format='.jpg', count_num=1000, resize=False):
    
    os.makedirs(frame_path, exist_ok=True)
    vidcap = cv2.VideoCapture(video_path)
    success,image = vidcap.read()
    count = 0
    while success:
        if resize:
            image = cv2.resize(image, (0,0), fx=0.5, fy=0.5)
        cv2.imwrite(frame_path + '/frame%04d' % count + img_format, image)     
        success,image = vidcap.read()
        count += 1
        if count >= count_num:
            break

# Align faces
def align_frames(img_dir, save_dir, output_size=1024, transform_size=1024, optical_flow=True, gaussian=True, filter_size=3):
    
    os.makedirs(save_dir, exist_ok=True)

    # load face landmark detector
    fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False, device='cuda')

    # list images in the directory
    img_list = glob.glob1(img_dir, 'frame*')
    img_list.sort()

    # save align statistics
    stat_dict = {'quad':[], 'qsize':[], 'coord':[], 'crop':[]}
    lms = []
    for idx, img_name in enumerate(img_list):

        img_path = os.path.join(img_dir, img_name)
        img = io.imread(img_path)
        lm = []

        preds = fa.get_landmarks(img)
        for kk in range(68):
            lm.append((preds[0][kk][0], preds[0][kk][1]))
        
        # Eye distance
        lm_eye_left      = lm[36 : 42]  # left-clockwise
        lm_eye_right     = lm[42 : 48]  # left-clockwise
        eye_left     = np.mean(lm_eye_left, axis=0)
        eye_right    = np.mean(lm_eye_right, axis=0)
        eye_to_eye   = eye_right - eye_left
            
        if optical_flow:
            if idx > 0:
                s = int(np.hypot(*eye_to_eye)/4)
                lk_params = dict(winSize=(s, s), maxLevel=5, criteria = (cv2.TERM_CRITERIA_COUNT | cv2.TERM_CRITERIA_EPS, 10, 0.03))
                points_arr = np.array(lm, np.float32)
                points_prevarr = np.array(prev_lm, np.float32)
                points_arr,status, err = cv2.calcOpticalFlowPyrLK(prev_img, img, points_prevarr, points_arr, **lk_params)
                sigma =100
                points_arr_float = np.array(points_arr,np.float32)
                points = points_arr_float.tolist()
                for k in range(0, len(lm)):
                    d = cv2.norm(np.array(prev_lm[k]) - np.array(lm[k]))
                    alpha = np.exp(-d*d/sigma)
                    lm[k] = (1 - alpha) * np.array(lm[k]) + alpha * np.array(points[k])
            prev_img = img
            prev_lm = lm

        lms.append(lm)
    
    # Apply gaussian filter on landmarks
    if gaussian:
        lm_filtered = np.array(lms)
        for kk in range(68):
            lm_filtered[:, kk, 0] = gaussian_filter1d(lm_filtered[:, kk, 0], filter_size)
            lm_filtered[:, kk, 1] = gaussian_filter1d(lm_filtered[:, kk, 1], filter_size)
        lms = lm_filtered.tolist()

    # save landmarks
    landmark_out_dir = os.path.dirname(img_dir) + '_landmark/'
    os.makedirs(landmark_out_dir, exist_ok=True)

    for idx, img_name in enumerate(img_list):

        img_path = os.path.join(img_dir, img_name)
        img = io.imread(img_path)

        lm = lms[idx]
        img_lm = img.copy()
        for kk in range(68):
            img_lm = cv2.circle(img_lm, (int(lm[kk][0]),int(lm[kk][1])), radius=3, color=(255, 0, 255), thickness=-1)
        # Save landmark images
        cv2.imwrite(landmark_out_dir + img_name, img_lm[:,:,::-1])

        # Save mask images
        """
        seg_mask = np.zeros(img.shape, img.dtype)
        poly = np.array(lm[0:17] + lm[17:27][::-1], np.int32)
        cv2.fillPoly(seg_mask, [poly], (255, 255, 255))
        cv2.imwrite(img_dir + "mask%04d.jpg"%idx, seg_mask);
        """

        # Parse landmarks. 
        lm_eye_left      = lm[36 : 42]  # left-clockwise
        lm_eye_right     = lm[42 : 48]  # left-clockwise
        lm_mouth_outer   = lm[48 : 60]  # left-clockwise

        # Calculate auxiliary vectors.
        eye_left     = np.mean([lm_eye_left[0], lm_eye_left[3]], axis=0)
        eye_right    = np.mean([lm_eye_right[0], lm_eye_right[3]], axis=0)
        eye_avg      = (eye_left + eye_right) * 0.5
        eye_to_eye   = eye_right - eye_left
        mouth_left   = np.array(lm_mouth_outer[0])
        mouth_right  = np.array(lm_mouth_outer[6])
        mouth_avg    = (mouth_left + mouth_right) * 0.5
        eye_to_mouth = mouth_avg - eye_avg

        # Choose oriented crop rectangle.
        x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
        x /= np.hypot(*x)
        x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
        y = np.flipud(x) * [-1, 1]
        c = eye_avg + eye_to_mouth * 0.1
        quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
        qsize = np.hypot(*x) * 2

        stat_dict['coord'].append(quad)
        stat_dict['qsize'].append(qsize)

    # Apply gaussian filter on crops
    if gaussian:
        quads = np.array(stat_dict['coord'])
        quads = gaussian_filter1d(quads, 2*filter_size, axis=0)
        stat_dict['coord'] = quads.tolist()
        qsize = np.array(stat_dict['qsize'])
        qsize = gaussian_filter1d(qsize, 2*filter_size, axis=0)
        stat_dict['qsize'] = qsize.tolist()

    for idx, img_name in enumerate(img_list):

        img_path = os.path.join(img_dir, img_name)
        img = Image.open(img_path)
        
        qsize = stat_dict['qsize'][idx]
        quad = np.array(stat_dict['coord'][idx])

        # Crop.
        border = max(int(np.rint(qsize * 0.1)), 3)
        crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
        crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
        if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
            img = img.crop(crop)
            quad -= crop[0:2]
        
        stat_dict['crop'].append(crop)
        stat_dict['quad'].append((quad + 0.5).flatten())

        # Pad.
        pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
        pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
        if max(pad) > border - 4:
            pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
            img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
            h, w, _ = img.shape
            y, x, _ = np.ogrid[:h, :w, :1]
            img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
            quad += pad[:2]
        # Transform.
        img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)

        # resizing
        img_pil = img.resize((output_size, output_size), Image.LANCZOS)
        img_pil.save(save_dir+img_name)

    create_video(landmark_out_dir)
    np.save(save_dir+'stat_dict.npy', stat_dict)


def find_coeffs(pa, pb):

    matrix = []
    for p1, p2 in zip(pa, pb):
        matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0]*p1[0], -p2[0]*p1[1]])
        matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1]*p1[0], -p2[1]*p1[1]])
    A = np.matrix(matrix, dtype=np.float)
    B = np.array(pb).reshape(8)
    res = np.dot(np.linalg.inv(A.T * A) * A.T, B)
    return np.array(res).reshape(8)

# reproject aligned frames to the original video
def video_reproject(orig_dir_path, recon_dir_path, save_dir_path, state_dir_path, mask_dir_path, seamless=False):

    if not os.path.exists(save_dir_path):
        os.makedirs(save_dir_path)

    img_list_0 = glob.glob1(orig_dir_path,'frame*')
    img_list_2 = glob.glob1(recon_dir_path,'frame*')
    img_list_0.sort()
    img_list_2.sort()
    stat_dict = np.load(state_dir_path + 'stat_dict.npy', allow_pickle=True).item()
    counter = len(img_list_2)

    for idx in range(counter):

        img_0 = Image.open(orig_dir_path + img_list_0[idx])
        img_2 = Image.open(recon_dir_path + img_list_2[idx])

        quad_f = stat_dict['quad'][idx]
        quad_0 = stat_dict['crop'][idx]

        coeffs = find_coeffs(
            [(quad_f[0], quad_f[1]), (quad_f[2] , quad_f[3]), (quad_f[4], quad_f[5]), (quad_f[6], quad_f[7])],
            [(0, 0), (0, 1024), (1024, 1024), (1024, 0)])
        crop_size = (quad_0[2] - quad_0[0], quad_0[3] - quad_0[1])
        img_2 = img_2.transform(crop_size, Image.PERSPECTIVE, coeffs, Image.BICUBIC)
        output = img_0.copy()
        output.paste(img_2, (int(quad_0[0]), int(quad_0[1])))
        
        """
        mask = cv2.imread(orig_dir_path + 'mask%04d.jpg'%idx)
        kernel = np.ones((10,10), np.uint8)
        mask = cv2.dilate(mask, kernel, iterations=5)
        """
        crop_mask = Image.open(mask_dir_path + img_list_0[idx])
        crop_mask = crop_mask.transform(crop_size, Image.PERSPECTIVE, coeffs, Image.BICUBIC)
        mask = Image.fromarray(np.zeros(np.array(img_0).shape, np.array(img_0).dtype))
        mask.paste(crop_mask, (int(quad_0[0]), int(quad_0[1])))
        mask = pil_to_cv2(mask)
        # Apply mask
        if not seamless:
            mask = cv2_to_pil(mask).filter(ImageFilter.GaussianBlur(radius=10)).convert('L')
            mask = np.array(mask)[:, :, np.newaxis]/255.
            output = np.array(img_0)*(1-mask) + np.array(output)*mask
            output = Image.fromarray(output.astype(np.uint8))
            output.save(save_dir_path + img_list_2[idx])
        else:
            src = pil_to_cv2(output)
            dst = pil_to_cv2(img_0)
            # clone
            br = cv2.boundingRect(cv2.split(mask)[0]) # bounding rect (x,y,width,height)
            center = (br[0] + br[2] // 2, br[1] + br[3] // 2)
            output = cv2.seamlessClone(src, dst, mask, center, cv2.NORMAL_CLONE)
            cv2.imwrite(save_dir_path + img_list_2[idx], output)




# Align faces
def align_image(img_dir, save_dir, output_size=1024, transform_size=1024, format='*.png'):
    os.makedirs(save_dir, exist_ok=True)
    
    # load face landmark detector
    fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False, device='cuda')
    # list images in the directory
    img_list = glob.glob1(img_dir, format)
    #img_list = os.listdir(img_dir)
    img_list.sort()

    # save align statistics
    stat_dict = {'quad':[], 'qsize':[], 'coord':[], 'crop':[]}

    for idx, img_name in enumerate(img_list):

        img_path = os.path.join(img_dir, img_name)
        img = Image.open(img_path).convert('RGB')
        img_np = np.array(img)
        lm = []

        preds = fa.get_landmarks(img_np)
        for kk in range(68):
            lm.append((preds[0][kk][0], preds[0][kk][1]))
        if len(lm)==0:
            continue
        
        # Parse landmarks. Code extracted from ffhq-dataset
        # pylint: disable=unused-variable
        lm_chin          = lm[0  : 17]  # left-right
        lm_eyebrow_left  = lm[17 : 22]  # left-right
        lm_eyebrow_right = lm[22 : 27]  # left-right
        lm_nose          = lm[27 : 31]  # top-down
        lm_nostrils      = lm[31 : 36]  # top-down
        lm_eye_left      = lm[36 : 42]  # left-clockwise
        lm_eye_right     = lm[42 : 48]  # left-clockwise
        lm_mouth_outer   = lm[48 : 60]  # left-clockwise
        lm_mouth_inner   = lm[60 : 68]  # left-clockwise

        # Calculate auxiliary vectors.
        eye_left     = np.mean([lm_eye_left[0], lm_eye_left[3]], axis=0)
        eye_right    = np.mean([lm_eye_right[0], lm_eye_right[3]], axis=0)
        eye_avg      = (eye_left + eye_right) * 0.5
        eye_to_eye   = eye_right - eye_left
        mouth_left   = np.array(lm_mouth_outer[0])
        mouth_right  = np.array(lm_mouth_outer[6])
        mouth_avg    = (mouth_left + mouth_right) * 0.5
        eye_to_mouth = mouth_avg - eye_avg

        # Choose oriented crop rectangle.
        x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
        x /= np.hypot(*x)
        x *= np.hypot(*eye_to_eye) * 2.0#max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
        
        y = np.flipud(x) * [-1, 1]
        c = eye_avg + eye_to_mouth * 0.1
        quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
        qsize = np.hypot(*x) * 2

        stat_dict['coord'].append(quad)
        stat_dict['qsize'].append(qsize)

        qsize = stat_dict['qsize'][idx]
        quad = np.array(stat_dict['coord'][idx])
        """
        # Shrink.
        shrink = int(np.floor(qsize / output_size * 0.5))
        if shrink > 1:
            print('shrink!')
            rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
            img = img.resize(rsize, Image.ANTIALIAS)
            quad /= shrink
            qsize /= shrink
        """
        # Crop.
        border = max(int(np.rint(qsize * 0.1)), 3)
        crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
        crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
        if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
            img = img.crop(crop)
            quad -= crop[0:2]
        
        stat_dict['crop'].append(crop)
        stat_dict['quad'].append((quad + 0.5).flatten())
        #img = img.crop(crop)
        # Pad.
        pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
        pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
        if max(pad) > border - 4:
            pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
            img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'edge')
            h, w, _ = img.shape
            y, x, _ = np.ogrid[:h, :w, :1]
            img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
            quad += pad[:2]
        # Transform.
        img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
        img_pil = img.resize((output_size, output_size), Image.LANCZOS)
        
        # resizing
        img_pil.save(save_dir+img_name)

    np.save(save_dir+'stat_dict.npy', stat_dict)

img_to_tensor = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

def generate_mask(img_dir, save_dir, parsing_net, labels=[1,2,3,4,5,6,9,10,11,12,13], output_size=(1024, 1024), device=torch.device('cuda')):
    os.makedirs(save_dir, exist_ok=True)
    img_list = glob.glob1(img_dir, 'frame*')
    img_list.sort()

    for img_name in img_list:
        img_path = os.path.join(img_dir, img_name)
        img = Image.open(img_path).resize((512, 512), Image.LANCZOS)
        x_1 = img_to_tensor(img).unsqueeze(0).to(device)
        out_1 = parsing_net(x_1)
        parsing = out_1[0].squeeze(0).detach().cpu().numpy().argmax(0)
        mask = np.uint8(parsing)
        for j in labels:
            mask = np.where(mask==j, 255, mask)
        mask = np.where(mask==255, 255, 0)
        mask_pil = Image.fromarray(np.uint8(mask)).resize(output_size, Image.LANCZOS)
        save_path = os.path.join(save_dir, img_name)
        mask_pil.save(save_path)