File size: 5,754 Bytes
6d314be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import glob
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data

from PIL import Image
from torchvision import transforms, utils

class MyDataSet(data.Dataset):
    def __init__(self, image_dir=None, label_dir=None, output_size=(256, 256), noise_in=None, training_set=True, video_data=False, train_split=0.9):
        self.image_dir = image_dir
        self.normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
        self.resize = transforms.Compose([
            transforms.Resize(output_size),
            transforms.ToTensor()
        ])
        self.noise_in = noise_in
        self.video_data = video_data
        self.random_rotation = transforms.Compose([
            transforms.Resize(output_size),
            transforms.RandomPerspective(distortion_scale=0.05, p=1.0),
            transforms.ToTensor()
        ])

        # load image file
        train_len = None
        self.length = 0
        self.image_dir = image_dir
        if image_dir is not None:
            img_list = [glob.glob1(self.image_dir, ext) for ext in ['*jpg','*png']]
            image_list = [item for sublist in img_list for item in sublist]
            image_list.sort()
            train_len = int(train_split*len(image_list))
            if training_set:
                self.image_list = image_list[:train_len]
            else:
                self.image_list = image_list[train_len:]
            self.length = len(self.image_list)

        # load label file
        self.label_dir = label_dir
        if label_dir is not None:
            self.seeds = np.load(label_dir)
            if train_len is None:
                train_len = int(train_split*len(self.seeds))
            if training_set:
                self.seeds = self.seeds[:train_len]
            else:
                self.seeds = self.seeds[train_len:]
            if self.length == 0:
                self.length = len(self.seeds)

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        img = None
        if self.image_dir is not None:
            img_name = os.path.join(self.image_dir, self.image_list[idx])
            image = Image.open(img_name)
            img = self.resize(image)
            if img.size(0) == 1:
                img = torch.cat((img, img, img), dim=0)
            img = self.normalize(img)

        # generate image 
        if self.label_dir is not None:
            torch.manual_seed(self.seeds[idx])
            z = torch.randn(1, 512)[0]
            if self.noise_in is None:
                n = [torch.randn(1, 1)]
            else:
                n = [torch.randn(noise.size())[0] for noise in self.noise_in]
            if img is None:
                return z, n 
            else:
                return z, img, n
        else:
            return img

class Car_DataSet(data.Dataset):
    def __init__(self, image_dir=None, label_dir=None, output_size=(512, 512), noise_in=None, training_set=True, video_data=False, train_split=0.9):
        self.image_dir = image_dir
        self.normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
        self.resize = transforms.Compose([
            transforms.Resize((384, 512)),
            transforms.Pad(padding=(0, 64, 0, 64)),
            transforms.ToTensor()
        ])
        self.noise_in = noise_in
        self.video_data = video_data
        self.random_rotation = transforms.Compose([
            transforms.Resize(output_size),
            transforms.RandomPerspective(distortion_scale=0.05, p=1.0),
            transforms.ToTensor()
        ])

        # load image file
        train_len = None
        self.length = 0
        self.image_dir = image_dir
        if image_dir is not None:
            img_list = [glob.glob1(self.image_dir, ext) for ext in ['*jpg','*png']]
            image_list = [item for sublist in img_list for item in sublist]
            image_list.sort()
            train_len = int(train_split*len(image_list))
            if training_set:
                self.image_list = image_list[:train_len]
            else:
                self.image_list = image_list[train_len:]
            self.length = len(self.image_list)

        # load label file
        self.label_dir = label_dir
        if label_dir is not None:
            self.seeds = np.load(label_dir)
            if train_len is None:
                train_len = int(train_split*len(self.seeds))
            if training_set:
                self.seeds = self.seeds[:train_len]
            else:
                self.seeds = self.seeds[train_len:]
            if self.length == 0:
                self.length = len(self.seeds)

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        img = None
        if self.image_dir is not None:
            img_name = os.path.join(self.image_dir, self.image_list[idx])
            image = Image.open(img_name)
            img = self.resize(image)
            if img.size(0) == 1:
                img = torch.cat((img, img, img), dim=0)
            img = self.normalize(img)
            if self.video_data:
                img_2 = self.random_rotation(image)
                img_2 = self.normalize(img_2)
                img_2 = torch.where(img_2 > -1, img_2, img)
                img = torch.cat([img, img_2], dim=0)

        # generate image 
        if self.label_dir is not None:
            torch.manual_seed(self.seeds[idx])
            z = torch.randn(1, 512)[0]
            n = [torch.randn_like(noise[0]) for noise in self.noise_in]
            if img is None:
                return z, n 
            else:
                return z, img, n
        else:
            return img