Spaces:
Build error
Build error
File size: 22,311 Bytes
6d314be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
from dataclasses import dataclass
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms as T
from utils.bicubic import BicubicDownSample
normalize = T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
@dataclass
class DefaultPaths:
psp_path: str = "pretrained_models/psp_ffhq_encode.pt"
ir_se50_path: str = "pretrained_models/ArcFace/ir_se50.pth"
stylegan_weights: str = "pretrained_models/stylegan2-ffhq-config-f.pt"
stylegan_car_weights: str = "pretrained_models/stylegan2-car-config-f-new.pkl"
stylegan_weights_pkl: str = (
"pretrained_models/stylegan2-ffhq-config-f.pkl"
)
arcface_model_path: str = "pretrained_models/ArcFace/backbone_ir50.pth"
moco: str = "pretrained_models/moco_v2_800ep_pretrain.pt"
from collections import namedtuple
from torch.nn import (
Conv2d,
BatchNorm2d,
PReLU,
ReLU,
Sigmoid,
MaxPool2d,
AdaptiveAvgPool2d,
Sequential,
Module,
Dropout,
Linear,
BatchNorm1d,
)
"""
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
"""
class Flatten(Module):
def forward(self, input):
return input.view(input.size(0), -1)
def l2_norm(input, axis=1):
norm = torch.norm(input, 2, axis, True)
output = torch.div(input, norm)
return output
class Bottleneck(namedtuple("Block", ["in_channel", "depth", "stride"])):
"""A named tuple describing a ResNet block."""
def get_block(in_channel, depth, num_units, stride=2):
return [Bottleneck(in_channel, depth, stride)] + [
Bottleneck(depth, depth, 1) for i in range(num_units - 1)
]
def get_blocks(num_layers):
if num_layers == 50:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=14),
get_block(in_channel=256, depth=512, num_units=3),
]
elif num_layers == 100:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=13),
get_block(in_channel=128, depth=256, num_units=30),
get_block(in_channel=256, depth=512, num_units=3),
]
elif num_layers == 152:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=8),
get_block(in_channel=128, depth=256, num_units=36),
get_block(in_channel=256, depth=512, num_units=3),
]
else:
raise ValueError(
"Invalid number of layers: {}. Must be one of [50, 100, 152]".format(
num_layers
)
)
return blocks
class SEModule(Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = AdaptiveAvgPool2d(1)
self.fc1 = Conv2d(
channels, channels // reduction, kernel_size=1, padding=0, bias=False
)
self.relu = ReLU(inplace=True)
self.fc2 = Conv2d(
channels // reduction, channels, kernel_size=1, padding=0, bias=False
)
self.sigmoid = Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
class bottleneck_IR(Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
BatchNorm2d(depth),
)
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
PReLU(depth),
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
BatchNorm2d(depth),
)
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class bottleneck_IR_SE(Module):
def __init__(self, in_channel, depth, stride):
super(bottleneck_IR_SE, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
BatchNorm2d(depth),
)
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
PReLU(depth),
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
BatchNorm2d(depth),
SEModule(depth, 16),
)
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
"""
Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
"""
class Backbone(Module):
def __init__(self, input_size, num_layers, mode="ir", drop_ratio=0.4, affine=True):
super(Backbone, self).__init__()
assert input_size in [112, 224], "input_size should be 112 or 224"
assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
assert mode in ["ir", "ir_se"], "mode should be ir or ir_se"
blocks = get_blocks(num_layers)
if mode == "ir":
unit_module = bottleneck_IR
elif mode == "ir_se":
unit_module = bottleneck_IR_SE
self.input_layer = Sequential(
Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64)
)
if input_size == 112:
self.output_layer = Sequential(
BatchNorm2d(512),
Dropout(drop_ratio),
Flatten(),
Linear(512 * 7 * 7, 512),
BatchNorm1d(512, affine=affine),
)
else:
self.output_layer = Sequential(
BatchNorm2d(512),
Dropout(drop_ratio),
Flatten(),
Linear(512 * 14 * 14, 512),
BatchNorm1d(512, affine=affine),
)
modules = []
for block in blocks:
for bottleneck in block:
modules.append(
unit_module(
bottleneck.in_channel, bottleneck.depth, bottleneck.stride
)
)
self.body = Sequential(*modules)
def forward(self, x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_layer(x)
return l2_norm(x)
def IR_50(input_size):
"""Constructs a ir-50 model."""
model = Backbone(input_size, num_layers=50, mode="ir", drop_ratio=0.4, affine=False)
return model
def IR_101(input_size):
"""Constructs a ir-101 model."""
model = Backbone(
input_size, num_layers=100, mode="ir", drop_ratio=0.4, affine=False
)
return model
def IR_152(input_size):
"""Constructs a ir-152 model."""
model = Backbone(
input_size, num_layers=152, mode="ir", drop_ratio=0.4, affine=False
)
return model
def IR_SE_50(input_size):
"""Constructs a ir_se-50 model."""
model = Backbone(
input_size, num_layers=50, mode="ir_se", drop_ratio=0.4, affine=False
)
return model
def IR_SE_101(input_size):
"""Constructs a ir_se-101 model."""
model = Backbone(
input_size, num_layers=100, mode="ir_se", drop_ratio=0.4, affine=False
)
return model
def IR_SE_152(input_size):
"""Constructs a ir_se-152 model."""
model = Backbone(
input_size, num_layers=152, mode="ir_se", drop_ratio=0.4, affine=False
)
return model
class IDLoss(nn.Module):
def __init__(self):
super(IDLoss, self).__init__()
print("Loading ResNet ArcFace")
self.facenet = Backbone(
input_size=112, num_layers=50, drop_ratio=0.6, mode="ir_se"
)
self.facenet.load_state_dict(torch.load(DefaultPaths.ir_se50_path))
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
self.facenet.eval()
def extract_feats(self, x):
x = x[:, :, 35:223, 32:220] # Crop interesting region
x = self.face_pool(x)
x_feats = self.facenet(x)
return x_feats
def forward(self, y_hat, y):
n_samples = y.shape[0]
y_feats = self.extract_feats(y)
y_hat_feats = self.extract_feats(y_hat)
y_feats = y_feats.detach()
loss = 0
count = 0
for i in range(n_samples):
diff_target = y_hat_feats[i].dot(y_feats[i])
loss += 1 - diff_target
count += 1
return loss / count
class FeatReconLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.MSELoss()
def forward(self, recon_1, recon_2):
return self.loss_fn(recon_1, recon_2).mean()
class EncoderAdvLoss:
def __call__(self, fake_preds):
loss_G_adv = F.softplus(-fake_preds).mean()
return loss_G_adv
class AdvLoss:
def __init__(self, coef=0.0):
self.coef = coef
def __call__(self, disc, real_images, generated_images):
fake_preds = disc(generated_images, None)
real_preds = disc(real_images, None)
loss = self.d_logistic_loss(real_preds, fake_preds)
return {'disc adv': loss}
def d_logistic_loss(self, real_preds, fake_preds):
real_loss = F.softplus(-real_preds)
fake_loss = F.softplus(fake_preds)
return (real_loss.mean() + fake_loss.mean()) / 2
from models.face_parsing.model import BiSeNet, seg_mean, seg_std
class DiceLoss(nn.Module):
def __init__(self, gamma=2):
super().__init__()
self.gamma = gamma
self.seg = BiSeNet(n_classes=16)
self.seg.to('cuda')
self.seg.load_state_dict(torch.load('pretrained_models/BiSeNet/seg.pth'))
for param in self.seg.parameters():
param.requires_grad = False
self.seg.eval()
self.downsample_512 = BicubicDownSample(factor=2)
def calc_landmark(self, x):
IM = (self.downsample_512(x) - seg_mean) / seg_std
out, _, _ = self.seg(IM)
return out
def dice_loss(self, input, target):
smooth = 1.
iflat = input.view(input.size(0), -1)
tflat = target.view(target.size(0), -1)
intersection = (iflat * tflat).sum(dim=1)
fn = torch.sum((tflat * (1-iflat))**self.gamma, dim=1)
fp = torch.sum(((1-tflat) * iflat)**self.gamma, dim=1)
return 1 - ((2. * intersection + smooth) /
(iflat.sum(dim=1) + tflat.sum(dim=1) + fn + fp + smooth))
def __call__(self, in_logit, tg_logit):
probs1 = F.softmax(in_logit, dim=1)
probs2 = F.softmax(tg_logit, dim=1)
return self.dice_loss(probs1, probs2).mean()
from typing import Sequence
from itertools import chain
import torch
import torch.nn as nn
from torchvision import models
def get_network(net_type: str):
if net_type == "alex":
return AlexNet()
elif net_type == "squeeze":
return SqueezeNet()
elif net_type == "vgg":
return VGG16()
else:
raise NotImplementedError("choose net_type from [alex, squeeze, vgg].")
class LinLayers(nn.ModuleList):
def __init__(self, n_channels_list: Sequence[int]):
super(LinLayers, self).__init__(
[
nn.Sequential(nn.Identity(), nn.Conv2d(nc, 1, 1, 1, 0, bias=False))
for nc in n_channels_list
]
)
for param in self.parameters():
param.requires_grad = False
class BaseNet(nn.Module):
def __init__(self):
super(BaseNet, self).__init__()
# register buffer
self.register_buffer(
"mean", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None]
)
self.register_buffer(
"std", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None]
)
def set_requires_grad(self, state: bool):
for param in chain(self.parameters(), self.buffers()):
param.requires_grad = state
def z_score(self, x: torch.Tensor):
return (x - self.mean) / self.std
def forward(self, x: torch.Tensor):
x = self.z_score(x)
output = []
for i, (_, layer) in enumerate(self.layers._modules.items(), 1):
x = layer(x)
if i in self.target_layers:
output.append(normalize_activation(x))
if len(output) == len(self.target_layers):
break
return output
class SqueezeNet(BaseNet):
def __init__(self):
super(SqueezeNet, self).__init__()
self.layers = models.squeezenet1_1(True).features
self.target_layers = [2, 5, 8, 10, 11, 12, 13]
self.n_channels_list = [64, 128, 256, 384, 384, 512, 512]
self.set_requires_grad(False)
class AlexNet(BaseNet):
def __init__(self):
super(AlexNet, self).__init__()
self.layers = models.alexnet(True).features
self.target_layers = [2, 5, 8, 10, 12]
self.n_channels_list = [64, 192, 384, 256, 256]
self.set_requires_grad(False)
class VGG16(BaseNet):
def __init__(self):
super(VGG16, self).__init__()
self.layers = models.vgg16(True).features
self.target_layers = [4, 9, 16, 23, 30]
self.n_channels_list = [64, 128, 256, 512, 512]
self.set_requires_grad(False)
from collections import OrderedDict
import torch
def normalize_activation(x, eps=1e-10):
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
return x / (norm_factor + eps)
def get_state_dict(net_type: str = "alex", version: str = "0.1"):
# build url
url = (
"https://raw.githubusercontent.com/richzhang/PerceptualSimilarity/"
+ f"master/lpips/weights/v{version}/{net_type}.pth"
)
# download
old_state_dict = torch.hub.load_state_dict_from_url(
url,
progress=True,
map_location=None if torch.cuda.is_available() else torch.device("cpu"),
)
# rename keys
new_state_dict = OrderedDict()
for key, val in old_state_dict.items():
new_key = key
new_key = new_key.replace("lin", "")
new_key = new_key.replace("model.", "")
new_state_dict[new_key] = val
return new_state_dict
class LPIPS(nn.Module):
r"""Creates a criterion that measures
Learned Perceptual Image Patch Similarity (LPIPS).
Arguments:
net_type (str): the network type to compare the features:
'alex' | 'squeeze' | 'vgg'. Default: 'alex'.
version (str): the version of LPIPS. Default: 0.1.
"""
def __init__(self, net_type: str = "alex", version: str = "0.1"):
assert version in ["0.1"], "v0.1 is only supported now"
super(LPIPS, self).__init__()
# pretrained network
self.net = get_network(net_type).to("cuda")
# linear layers
self.lin = LinLayers(self.net.n_channels_list).to("cuda")
self.lin.load_state_dict(get_state_dict(net_type, version))
def forward(self, x: torch.Tensor, y: torch.Tensor):
feat_x, feat_y = self.net(x), self.net(y)
diff = [(fx - fy) ** 2 for fx, fy in zip(feat_x, feat_y)]
res = [l(d).mean((2, 3), True) for d, l in zip(diff, self.lin)]
return torch.sum(torch.cat(res, 0)) / x.shape[0]
class LPIPSLoss(LPIPS):
pass
class LPIPSScaleLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = LPIPSLoss()
def forward(self, x, y):
out = 0
for res in [256, 128, 64]:
x_scale = F.interpolate(x, size=(res, res), mode="bilinear", align_corners=False)
y_scale = F.interpolate(y, size=(res, res), mode="bilinear", align_corners=False)
out += self.loss_fn.forward(x_scale, y_scale).mean()
return out
class SyntMSELoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.MSELoss()
def forward(self, im1, im2):
return self.loss_fn(im1, im2).mean()
class R1Loss:
def __init__(self, coef=10.0):
self.coef = coef
def __call__(self, disc, real_images):
real_images.requires_grad = True
real_preds = disc(real_images, None)
real_preds = real_preds.view(real_images.size(0), -1)
real_preds = real_preds.mean(dim=1).unsqueeze(1)
r1_loss = self.d_r1_loss(real_preds, real_images)
loss_D_R1 = self.coef / 2 * r1_loss * 16 + 0 * real_preds[0]
return {'disc r1 loss': loss_D_R1}
def d_r1_loss(self, real_pred, real_img):
(grad_real,) = torch.autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
class DilatedMask:
def __init__(self, kernel_size=5):
self.kernel_size = kernel_size
cords_x = torch.arange(0, kernel_size).view(1, -1).expand(kernel_size, -1) - kernel_size // 2
cords_y = cords_x.clone().permute(1, 0)
self.kernel = torch.as_tensor((cords_x ** 2 + cords_y ** 2) <= (kernel_size // 2) ** 2, dtype=torch.float).view(1, 1, kernel_size, kernel_size).cuda()
self.kernel /= self.kernel.sum()
def __call__(self, mask):
smooth_mask = F.conv2d(mask, self.kernel, padding=self.kernel_size // 2)
return smooth_mask ** 0.25
class LossBuilder:
def __init__(self, losses_dict, device='cuda'):
self.losses_dict = losses_dict
self.device = device
self.EncoderAdvLoss = EncoderAdvLoss()
self.AdvLoss = AdvLoss()
self.R1Loss = R1Loss()
self.FeatReconLoss = FeatReconLoss().to(device).eval()
self.IDLoss = IDLoss().to(device).eval()
self.LPIPS = LPIPSScaleLoss().to(device).eval()
self.SyntMSELoss = SyntMSELoss().to(device).eval()
self.downsample_256 = BicubicDownSample(factor=4)
def CalcAdvLoss(self, disc, gen_F):
fake_preds_F = disc(gen_F, None)
return {'adv': self.losses_dict['adv'] * self.EncoderAdvLoss(fake_preds_F)}
def CalcDisLoss(self, disc, real_images, generated_images):
return self.AdvLoss(disc, real_images, generated_images)
def CalcR1Loss(self, disc, real_images):
return self.R1Loss(disc, real_images)
def __call__(self, source, target, target_mask, HT_E, gen_w, F_w, gen_F, F_gen, **kwargs):
losses = {}
gen_w_256 = self.downsample_256(gen_w)
gen_F_256 = self.downsample_256(gen_F)
# ID loss
losses['rec id'] = self.losses_dict['id'] * (self.IDLoss(normalize(source), gen_w_256) + self.IDLoss(normalize(source), gen_F_256))
# Feat Recons Loss
losses['rec feat_rec'] = self.losses_dict['feat_rec'] * self.FeatReconLoss(F_w.detach(), F_gen)
# LPIPS loss
losses['rec lpips_scale'] = self.losses_dict['lpips_scale'] * (self.LPIPS(normalize(source), gen_w_256) + self.LPIPS(normalize(source), gen_F_256))
# Synt loss
# losses['l2_synt'] = self.losses_dict['l2_synt'] * self.SyntMSELoss(target * HT_E, (gen_F_256 + 1) / 2 * HT_E)
return losses
class LossBuilderMulti(LossBuilder):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.DiceLoss = DiceLoss().to(kwargs.get('device', 'cuda')).eval()
self.dilated = DilatedMask(25)
def __call__(self, source, target, target_mask, HT_E, gen_w, F_w, gen_F, F_gen, **kwargs):
losses = {}
gen_w_256 = self.downsample_256(gen_w)
gen_F_256 = self.downsample_256(gen_F)
# Dice loss
with torch.no_grad():
target_512 = F.interpolate(target, size=(512, 512), mode='bilinear').clip(0, 1)
seg_target = self.DiceLoss.calc_landmark(target_512)
seg_target = F.interpolate(seg_target, size=(256, 256), mode='nearest')
seg_gen = F.interpolate(self.DiceLoss.calc_landmark((gen_F + 1) / 2), size=(256, 256), mode='nearest')
losses['DiceLoss'] = self.losses_dict['landmark'] * self.DiceLoss(seg_gen, seg_target)
# ID loss
losses['id'] = self.losses_dict['id'] * (self.IDLoss(normalize(source) * target_mask, gen_w_256 * target_mask) +
self.IDLoss(normalize(source) * target_mask, gen_F_256 * target_mask))
# Feat Recons loss
losses['feat_rec'] = self.losses_dict['feat_rec'] * self.FeatReconLoss(F_w.detach(), F_gen)
# LPIPS loss
losses['lpips_face'] = 0.5 * self.losses_dict['lpips_scale'] * (self.LPIPS(normalize(source) * target_mask, gen_w_256 * target_mask) +
self.LPIPS(normalize(source) * target_mask, gen_F_256 * target_mask))
losses['lpips_hair'] = 0.5 * self.losses_dict['lpips_scale'] * (self.LPIPS(normalize(target) * HT_E, gen_w_256 * HT_E) +
self.LPIPS(normalize(target) * HT_E, gen_F_256 * HT_E))
# Inpaint loss
if self.losses_dict['inpaint'] != 0.:
M_Inp = (1 - target_mask) * (1 - HT_E)
Smooth_M = self.dilated(M_Inp)
losses['inpaint'] = 0.5 * self.losses_dict['inpaint'] * self.LPIPS(normalize(target) * Smooth_M, gen_F_256 * Smooth_M)
losses['inpaint'] += 0.5 * self.losses_dict['inpaint'] * self.LPIPS(gen_w_256.detach() * Smooth_M * (1 - HT_E), gen_F_256 * Smooth_M * (1 - HT_E))
return losses
|