alexzyqi's picture
20240706
52d68d4
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import os
import argparse
import mcubes
import trimesh
import safetensors
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from tqdm.auto import tqdm
from accelerate.logging import get_logger
from huggingface_hub import hf_hub_download
from .base_inferrer import Inferrer
from openlrm.datasets.cam_utils import build_camera_principle, build_camera_standard, surrounding_views_linspace, create_intrinsics
from openlrm.utils.logging import configure_logger
from openlrm.runners import REGISTRY_RUNNERS
from openlrm.utils.video import images_to_video
from openlrm.utils.hf_hub import wrap_model_hub
logger = get_logger(__name__)
def parse_configs():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str)
parser.add_argument('--infer', type=str)
args, unknown = parser.parse_known_args()
cfg = OmegaConf.create()
cli_cfg = OmegaConf.from_cli(unknown)
# parse from ENV
if os.environ.get('APP_INFER') is not None:
args.infer = os.environ.get('APP_INFER')
if os.environ.get('APP_MODEL_NAME') is not None:
cli_cfg.model_name = os.environ.get('APP_MODEL_NAME')
if os.environ.get('APP_PRETRAIN_MODEL_NAME') is not None:
cli_cfg.pretrain_model_hf = os.environ.get('APP_PRETRAIN_MODEL_NAME')
if args.config is not None:
cfg_train = OmegaConf.load(args.config)
cfg.source_size = cfg_train.dataset.source_image_res
cfg.render_size = cfg_train.dataset.render_image.high
_relative_path = os.path.join(cfg_train.experiment.parent, cfg_train.experiment.child, os.path.basename(cli_cfg.model_name).split('_')[-1])
cfg.video_dump = os.path.join("exps", 'videos', _relative_path)
cfg.mesh_dump = os.path.join("exps", 'meshes', _relative_path)
if args.infer is not None:
cfg_infer = OmegaConf.load(args.infer)
cfg.merge_with(cfg_infer)
if hasattr(cfg, 'experiment') and hasattr(cfg.experiment, 'parent'):
cfg.setdefault('video_dump', os.path.join("dumps", cli_cfg.model_name, cfg.experiment.parent, cfg.experiment.child, 'videos'))
cfg.setdefault('mesh_dump', os.path.join("dumps", cli_cfg.model_name, cfg.experiment.parent, cfg.experiment.child, 'meshes'))
else:
cfg.setdefault('video_dump', os.path.join("dumps", cli_cfg.model_name, 'videos'))
cfg.setdefault('mesh_dump', os.path.join("dumps", cli_cfg.model_name, 'meshes'))
cfg.setdefault('double_sided', False)
cfg.setdefault('pretrain_model_hf', None)
cfg.merge_with(cli_cfg)
"""
[required]
model_name: str
image_input: str
export_video: bool
export_mesh: bool
[special]
source_size: int
render_size: int
video_dump: str
mesh_dump: str
[default]
render_views: int
render_fps: int
mesh_size: int
mesh_thres: float
frame_size: int
logger: str
"""
cfg.setdefault('inferrer', {})
cfg['inferrer'].setdefault('logger', 'INFO')
# assert not (args.config is not None and args.infer is not None), "Only one of config and infer should be provided"
assert cfg.model_name is not None, "model_name is required"
if not os.environ.get('APP_ENABLED', None):
assert cfg.image_input is not None, "image_input is required"
assert cfg.export_video or cfg.export_mesh, \
"At least one of export_video or export_mesh should be True"
cfg.app_enabled = False
else:
cfg.app_enabled = True
return cfg
@REGISTRY_RUNNERS.register('infer.lrm')
class LRMInferrer(Inferrer):
EXP_TYPE: str = 'lrm'
def __init__(self):
super().__init__()
self.cfg = parse_configs()
configure_logger(
stream_level=self.cfg.inferrer.logger,
log_level=self.cfg.inferrer.logger,
)
self.model = self._build_model(self.cfg).to(self.device)
def _load_checkpoint(self, cfg):
ckpt_root = os.path.join(
cfg.saver.checkpoint_root,
cfg.experiment.parent, cfg.experiment.child,
)
if not os.path.exists(ckpt_root):
raise FileNotFoundError(f"The checkpoint directory '{ckpt_root}' does not exist.")
ckpt_dirs = os.listdir(ckpt_root)
iter_number = "{:06}".format(cfg.inferrer.iteration)
if iter_number not in ckpt_dirs:
raise FileNotFoundError(f"Checkpoint for iteration '{iter_number}' not found in '{ckpt_root}'.")
inferrer_ckpt_path = os.path.join(ckpt_root, iter_number, 'model.safetensors')
logger.info(f"======== Auto-resume from {inferrer_ckpt_path} ========")
return inferrer_ckpt_path
def _build_model(self, cfg):
from openlrm.models import model_dict
if cfg.inferrer.hugging_face is True: # for huggingface infer
hf_model_cls = wrap_model_hub(model_dict[self.EXP_TYPE])
model = hf_model_cls.from_pretrained(cfg.model_name)
if cfg.double_sided:
pretrain_model_path = hf_hub_download(repo_id=cfg.pretrain_model_hf, filename='model.safetensors')
safetensors.torch.load_model( # load the pretrain model after load the Tailor3D finetune part.
model,
pretrain_model_path,
strict=False
)
else: # for common infer
model = model_dict[self.EXP_TYPE](**cfg['model'])
inferrer_ckpt_path = self._load_checkpoint(cfg)
if cfg.double_sided:
pretrain_model_path = hf_hub_download(repo_id=cfg.pretrain_model_hf, filename='model.safetensors')
safetensors.torch.load_model( # load the pretrain model.
model,
pretrain_model_path,
strict=False
)
safetensors.torch.load_model( # load the finetune model.
model,
inferrer_ckpt_path,
strict=False
)
else:
safetensors.torch.load_model(
model,
inferrer_ckpt_path,
)
return model
@staticmethod
def save_images(images, output_path):
os.makedirs((output_path), exist_ok=True)
for i in range(images.shape[0]):
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
Image.fromarray(frame).save(os.path.join(output_path, f"{str(i)}.png"))
def _default_source_camera(self, dist_to_center: float = 2.0, batch_size: int = 1, device: torch.device = torch.device('cpu')):
# return: (N, D_cam_raw)
canonical_camera_extrinsics = torch.tensor([[
[1, 0, 0, 0],
[0, 0, -1, -dist_to_center],
[0, 1, 0, 0],
]], dtype=torch.float32, device=device)
canonical_camera_intrinsics = create_intrinsics(
f=0.75,
c=0.5,
device=device,
).unsqueeze(0)
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
return source_camera.repeat(batch_size, 1)
def _default_render_cameras(self, n_views: int, batch_size: int = 1, device: torch.device = torch.device('cpu')):
# return: (N, M, D_cam_render)
render_camera_extrinsics = surrounding_views_linspace(n_views=n_views, device=device)
render_camera_intrinsics = create_intrinsics(
f=0.75,
c=0.5,
device=device,
).unsqueeze(0).repeat(render_camera_extrinsics.shape[0], 1, 1)
render_cameras = build_camera_standard(render_camera_extrinsics, render_camera_intrinsics)
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
def infer_planes(self, image: torch.Tensor, source_cam_dist: float, back_image=None):
N = image.shape[0]
source_camera = self._default_source_camera(dist_to_center=source_cam_dist, batch_size=N, device=self.device)
front_planes = self.model.forward_planes(image, source_camera)
if back_image is not None:
back_planes = self.model.forward_planes(back_image, source_camera)
# XY Plane
back_planes[:, 0, :, :, :] = torch.flip(back_planes[:, 0, :, :, :], dims=[-2, -1])
# XZ Plane
back_planes[:, 1, :, :, :] = torch.flip(back_planes[:, 1, :, :, :], dims=[-1])
# YZ Plane
back_planes[:, 2, :, :, :] = torch.flip(back_planes[:, 2, :, :, :], dims=[-2])
# To fuse the front planes and the back planes
bs, num_planes, channels, height, width = front_planes.shape
if 'conv_fuse' in self.cfg['model']:
planes = torch.cat((front_planes, back_planes), dim=2)
planes = planes.reshape(-1, channels*2, height, width)
# planes = self.model.front_back_conv(planes).view(bs, num_planes, -1, height, width) # only one layer.
# Apply multiple convolutional layers
for layer in self.model.front_back_conv:
planes = layer(planes)
planes = planes.view(bs, num_planes, -1, height, width)
elif 'swin_ca_fuse' in self.cfg['model']:
front_planes = front_planes.reshape(bs*num_planes, channels, height*width).permute(0, 2, 1).contiguous() # [8, 3, 32, 64, 64] -> [24, 32, 4096] -> [24, 4096, 32]
back_planes = back_planes.reshape(bs*num_planes, channels, height*width).permute(0, 2, 1).contiguous()
planes = self.model.swin_cross_attention(front_planes, back_planes, height, width)[0].permute(0, 2, 1).reshape(bs, num_planes, channels, height, width)
else:
planes = front_planes
assert N == planes.shape[0]
return planes
def infer_video(self, planes: torch.Tensor, frame_size: int, render_size: int, render_views: int, render_fps: int, dump_video_path: str, image_format=False):
N = planes.shape[0]
render_cameras = self._default_render_cameras(n_views=render_views, batch_size=N, device=self.device)
render_anchors = torch.zeros(N, render_cameras.shape[1], 2, device=self.device)
render_resolutions = torch.ones(N, render_cameras.shape[1], 1, device=self.device) * render_size
render_bg_colors = torch.ones(N, render_cameras.shape[1], 1, device=self.device, dtype=torch.float32) * 1.
frames = []
for i in range(0, render_cameras.shape[1], frame_size):
frames.append(
self.model.synthesizer(
planes=planes,
cameras=render_cameras[:, i:i+frame_size],
anchors=render_anchors[:, i:i+frame_size],
resolutions=render_resolutions[:, i:i+frame_size],
bg_colors=render_bg_colors[:, i:i+frame_size],
region_size=render_size,
)
)
# merge frames
frames = {
k: torch.cat([r[k] for r in frames], dim=1)
for k in frames[0].keys()
}
# dump
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
for k, v in frames.items():
if k == 'images_rgb':
if image_format:
self.save_images( # save the rendering images directly.
v[0],
os.path.join(dump_video_path.replace('.mov', ''), 'nvs'),
)
else:
images_to_video(
images=v[0],
output_path=dump_video_path,
fps=render_fps,
gradio_codec=self.cfg.app_enabled,
)
def infer_mesh(self, planes: torch.Tensor, mesh_size: int, mesh_thres: float, dump_mesh_path: str):
grid_out = self.model.synthesizer.forward_grid(
planes=planes,
grid_size=mesh_size,
)
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), mesh_thres)
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=self.device).unsqueeze(0)
vtx_colors = self.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].squeeze(0).cpu().numpy() # (0, 1)
vtx_colors = (vtx_colors * 255).astype(np.uint8)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
# dump
os.makedirs(os.path.dirname(dump_mesh_path), exist_ok=True)
mesh.export(dump_mesh_path)
def infer_single(self, image_path: str, source_cam_dist: float, export_video: bool, export_mesh: bool, dump_video_path: str, dump_mesh_path: str, image_path_back=None):
source_size = self.cfg.inferrer.source_size
render_size = self.cfg.inferrer.render_size
render_views = self.cfg.inferrer.render_views
render_fps = self.cfg.inferrer.render_fps
mesh_size = self.cfg.inferrer.mesh_size
mesh_thres = self.cfg.inferrer.mesh_thres
frame_size = self.cfg.inferrer.frame_size
source_cam_dist = self.cfg.inferrer.source_cam_dist if source_cam_dist is None else source_cam_dist
image_format = self.cfg.inferrer.image_format
image = self.open_image(image_path, source_size)
if image_path_back is None:
back_image = self.open_image(image_path.replace('front', 'back'), source_size) if self.cfg.double_sided else None
else:
back_image = self.open_image(image_path_back, source_size) if self.cfg.double_sided else None
with torch.no_grad():
planes = self.infer_planes(image, source_cam_dist=source_cam_dist, back_image=back_image)
results = {}
if export_video:
frames = self.infer_video(planes, frame_size=frame_size, render_size=render_size, render_views=render_views, render_fps=render_fps, dump_video_path=dump_video_path,
image_format=image_format)
results.update({
'frames': frames,
})
if export_mesh:
mesh = self.infer_mesh(planes, mesh_size=mesh_size, mesh_thres=mesh_thres, dump_mesh_path=dump_mesh_path)
results.update({
'mesh': mesh,
})
def data_init(self):
image_paths = []
if os.path.isfile(self.cfg.image_input):
omit_prefix = os.path.dirname(self.cfg.image_input)
image_paths.append(self.cfg.image_input)
else:
omit_prefix = self.cfg.image_input
if self.cfg.double_sided: # double sided
walk_path = os.path.join(self.cfg.image_input, 'front')
else:
walk_path = self.cfg.image_input
for root, dirs, files in os.walk(walk_path):
for file in files:
if file.endswith('.png'):
image_paths.append(os.path.join(root, file))
image_paths.sort()
# alloc to each DDP worker
image_paths = image_paths[self.accelerator.process_index::self.accelerator.num_processes]
return image_paths, omit_prefix
def open_image(self, image_path, source_size):
# prepare image: [1, C_img, H_img, W_img], 0-1 scale
image = torch.from_numpy(np.array(Image.open(image_path))).to(self.device)
image = image.permute(2, 0, 1).unsqueeze(0) / 255.0
if image.shape[1] == 4: # RGBA
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
image = torch.clamp(image, 0, 1)
return image
def infer(self):
image_paths, omit_prefix = self.data_init()
for image_path in tqdm(image_paths, disable=not self.accelerator.is_local_main_process):
# prepare dump paths
image_name = os.path.basename(image_path)
uid = image_name.split('.')[0]
subdir_path = os.path.dirname(image_path).replace(omit_prefix, '')
subdir_path = subdir_path[1:] if subdir_path.startswith('/') else subdir_path
dump_video_path = os.path.join(
self.cfg.video_dump,
subdir_path,
f'{uid}.mov',
)
dump_mesh_path = os.path.join(
self.cfg.mesh_dump,
subdir_path,
f'{uid}.ply',
)
self.infer_single(
image_path,
source_cam_dist=None,
export_video=self.cfg.export_video,
export_mesh=self.cfg.export_mesh,
dump_video_path=dump_video_path,
dump_mesh_path=dump_mesh_path,
)