Spaces:
Runtime error
Runtime error
File size: 17,757 Bytes
52d68d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import os
import argparse
import mcubes
import trimesh
import safetensors
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from tqdm.auto import tqdm
from accelerate.logging import get_logger
from huggingface_hub import hf_hub_download
from .base_inferrer import Inferrer
from openlrm.datasets.cam_utils import build_camera_principle, build_camera_standard, surrounding_views_linspace, create_intrinsics
from openlrm.utils.logging import configure_logger
from openlrm.runners import REGISTRY_RUNNERS
from openlrm.utils.video import images_to_video
from openlrm.utils.hf_hub import wrap_model_hub
logger = get_logger(__name__)
def parse_configs():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str)
parser.add_argument('--infer', type=str)
args, unknown = parser.parse_known_args()
cfg = OmegaConf.create()
cli_cfg = OmegaConf.from_cli(unknown)
# parse from ENV
if os.environ.get('APP_INFER') is not None:
args.infer = os.environ.get('APP_INFER')
if os.environ.get('APP_MODEL_NAME') is not None:
cli_cfg.model_name = os.environ.get('APP_MODEL_NAME')
if os.environ.get('APP_PRETRAIN_MODEL_NAME') is not None:
cli_cfg.pretrain_model_hf = os.environ.get('APP_PRETRAIN_MODEL_NAME')
if args.config is not None:
cfg_train = OmegaConf.load(args.config)
cfg.source_size = cfg_train.dataset.source_image_res
cfg.render_size = cfg_train.dataset.render_image.high
_relative_path = os.path.join(cfg_train.experiment.parent, cfg_train.experiment.child, os.path.basename(cli_cfg.model_name).split('_')[-1])
cfg.video_dump = os.path.join("exps", 'videos', _relative_path)
cfg.mesh_dump = os.path.join("exps", 'meshes', _relative_path)
if args.infer is not None:
cfg_infer = OmegaConf.load(args.infer)
cfg.merge_with(cfg_infer)
if hasattr(cfg, 'experiment') and hasattr(cfg.experiment, 'parent'):
cfg.setdefault('video_dump', os.path.join("dumps", cli_cfg.model_name, cfg.experiment.parent, cfg.experiment.child, 'videos'))
cfg.setdefault('mesh_dump', os.path.join("dumps", cli_cfg.model_name, cfg.experiment.parent, cfg.experiment.child, 'meshes'))
else:
cfg.setdefault('video_dump', os.path.join("dumps", cli_cfg.model_name, 'videos'))
cfg.setdefault('mesh_dump', os.path.join("dumps", cli_cfg.model_name, 'meshes'))
cfg.setdefault('double_sided', False)
cfg.setdefault('pretrain_model_hf', None)
cfg.merge_with(cli_cfg)
"""
[required]
model_name: str
image_input: str
export_video: bool
export_mesh: bool
[special]
source_size: int
render_size: int
video_dump: str
mesh_dump: str
[default]
render_views: int
render_fps: int
mesh_size: int
mesh_thres: float
frame_size: int
logger: str
"""
cfg.setdefault('inferrer', {})
cfg['inferrer'].setdefault('logger', 'INFO')
# assert not (args.config is not None and args.infer is not None), "Only one of config and infer should be provided"
assert cfg.model_name is not None, "model_name is required"
if not os.environ.get('APP_ENABLED', None):
assert cfg.image_input is not None, "image_input is required"
assert cfg.export_video or cfg.export_mesh, \
"At least one of export_video or export_mesh should be True"
cfg.app_enabled = False
else:
cfg.app_enabled = True
return cfg
@REGISTRY_RUNNERS.register('infer.lrm')
class LRMInferrer(Inferrer):
EXP_TYPE: str = 'lrm'
def __init__(self):
super().__init__()
self.cfg = parse_configs()
configure_logger(
stream_level=self.cfg.inferrer.logger,
log_level=self.cfg.inferrer.logger,
)
self.model = self._build_model(self.cfg).to(self.device)
def _load_checkpoint(self, cfg):
ckpt_root = os.path.join(
cfg.saver.checkpoint_root,
cfg.experiment.parent, cfg.experiment.child,
)
if not os.path.exists(ckpt_root):
raise FileNotFoundError(f"The checkpoint directory '{ckpt_root}' does not exist.")
ckpt_dirs = os.listdir(ckpt_root)
iter_number = "{:06}".format(cfg.inferrer.iteration)
if iter_number not in ckpt_dirs:
raise FileNotFoundError(f"Checkpoint for iteration '{iter_number}' not found in '{ckpt_root}'.")
inferrer_ckpt_path = os.path.join(ckpt_root, iter_number, 'model.safetensors')
logger.info(f"======== Auto-resume from {inferrer_ckpt_path} ========")
return inferrer_ckpt_path
def _build_model(self, cfg):
from openlrm.models import model_dict
if cfg.inferrer.hugging_face is True: # for huggingface infer
hf_model_cls = wrap_model_hub(model_dict[self.EXP_TYPE])
model = hf_model_cls.from_pretrained(cfg.model_name)
if cfg.double_sided:
pretrain_model_path = hf_hub_download(repo_id=cfg.pretrain_model_hf, filename='model.safetensors')
safetensors.torch.load_model( # load the pretrain model after load the Tailor3D finetune part.
model,
pretrain_model_path,
strict=False
)
else: # for common infer
model = model_dict[self.EXP_TYPE](**cfg['model'])
inferrer_ckpt_path = self._load_checkpoint(cfg)
if cfg.double_sided:
pretrain_model_path = hf_hub_download(repo_id=cfg.pretrain_model_hf, filename='model.safetensors')
safetensors.torch.load_model( # load the pretrain model.
model,
pretrain_model_path,
strict=False
)
safetensors.torch.load_model( # load the finetune model.
model,
inferrer_ckpt_path,
strict=False
)
else:
safetensors.torch.load_model(
model,
inferrer_ckpt_path,
)
return model
@staticmethod
def save_images(images, output_path):
os.makedirs((output_path), exist_ok=True)
for i in range(images.shape[0]):
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
Image.fromarray(frame).save(os.path.join(output_path, f"{str(i)}.png"))
def _default_source_camera(self, dist_to_center: float = 2.0, batch_size: int = 1, device: torch.device = torch.device('cpu')):
# return: (N, D_cam_raw)
canonical_camera_extrinsics = torch.tensor([[
[1, 0, 0, 0],
[0, 0, -1, -dist_to_center],
[0, 1, 0, 0],
]], dtype=torch.float32, device=device)
canonical_camera_intrinsics = create_intrinsics(
f=0.75,
c=0.5,
device=device,
).unsqueeze(0)
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
return source_camera.repeat(batch_size, 1)
def _default_render_cameras(self, n_views: int, batch_size: int = 1, device: torch.device = torch.device('cpu')):
# return: (N, M, D_cam_render)
render_camera_extrinsics = surrounding_views_linspace(n_views=n_views, device=device)
render_camera_intrinsics = create_intrinsics(
f=0.75,
c=0.5,
device=device,
).unsqueeze(0).repeat(render_camera_extrinsics.shape[0], 1, 1)
render_cameras = build_camera_standard(render_camera_extrinsics, render_camera_intrinsics)
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
def infer_planes(self, image: torch.Tensor, source_cam_dist: float, back_image=None):
N = image.shape[0]
source_camera = self._default_source_camera(dist_to_center=source_cam_dist, batch_size=N, device=self.device)
front_planes = self.model.forward_planes(image, source_camera)
if back_image is not None:
back_planes = self.model.forward_planes(back_image, source_camera)
# XY Plane
back_planes[:, 0, :, :, :] = torch.flip(back_planes[:, 0, :, :, :], dims=[-2, -1])
# XZ Plane
back_planes[:, 1, :, :, :] = torch.flip(back_planes[:, 1, :, :, :], dims=[-1])
# YZ Plane
back_planes[:, 2, :, :, :] = torch.flip(back_planes[:, 2, :, :, :], dims=[-2])
# To fuse the front planes and the back planes
bs, num_planes, channels, height, width = front_planes.shape
if 'conv_fuse' in self.cfg['model']:
planes = torch.cat((front_planes, back_planes), dim=2)
planes = planes.reshape(-1, channels*2, height, width)
# planes = self.model.front_back_conv(planes).view(bs, num_planes, -1, height, width) # only one layer.
# Apply multiple convolutional layers
for layer in self.model.front_back_conv:
planes = layer(planes)
planes = planes.view(bs, num_planes, -1, height, width)
elif 'swin_ca_fuse' in self.cfg['model']:
front_planes = front_planes.reshape(bs*num_planes, channels, height*width).permute(0, 2, 1).contiguous() # [8, 3, 32, 64, 64] -> [24, 32, 4096] -> [24, 4096, 32]
back_planes = back_planes.reshape(bs*num_planes, channels, height*width).permute(0, 2, 1).contiguous()
planes = self.model.swin_cross_attention(front_planes, back_planes, height, width)[0].permute(0, 2, 1).reshape(bs, num_planes, channels, height, width)
else:
planes = front_planes
assert N == planes.shape[0]
return planes
def infer_video(self, planes: torch.Tensor, frame_size: int, render_size: int, render_views: int, render_fps: int, dump_video_path: str, image_format=False):
N = planes.shape[0]
render_cameras = self._default_render_cameras(n_views=render_views, batch_size=N, device=self.device)
render_anchors = torch.zeros(N, render_cameras.shape[1], 2, device=self.device)
render_resolutions = torch.ones(N, render_cameras.shape[1], 1, device=self.device) * render_size
render_bg_colors = torch.ones(N, render_cameras.shape[1], 1, device=self.device, dtype=torch.float32) * 1.
frames = []
for i in range(0, render_cameras.shape[1], frame_size):
frames.append(
self.model.synthesizer(
planes=planes,
cameras=render_cameras[:, i:i+frame_size],
anchors=render_anchors[:, i:i+frame_size],
resolutions=render_resolutions[:, i:i+frame_size],
bg_colors=render_bg_colors[:, i:i+frame_size],
region_size=render_size,
)
)
# merge frames
frames = {
k: torch.cat([r[k] for r in frames], dim=1)
for k in frames[0].keys()
}
# dump
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
for k, v in frames.items():
if k == 'images_rgb':
if image_format:
self.save_images( # save the rendering images directly.
v[0],
os.path.join(dump_video_path.replace('.mov', ''), 'nvs'),
)
else:
images_to_video(
images=v[0],
output_path=dump_video_path,
fps=render_fps,
gradio_codec=self.cfg.app_enabled,
)
def infer_mesh(self, planes: torch.Tensor, mesh_size: int, mesh_thres: float, dump_mesh_path: str):
grid_out = self.model.synthesizer.forward_grid(
planes=planes,
grid_size=mesh_size,
)
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), mesh_thres)
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=self.device).unsqueeze(0)
vtx_colors = self.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].squeeze(0).cpu().numpy() # (0, 1)
vtx_colors = (vtx_colors * 255).astype(np.uint8)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
# dump
os.makedirs(os.path.dirname(dump_mesh_path), exist_ok=True)
mesh.export(dump_mesh_path)
def infer_single(self, image_path: str, source_cam_dist: float, export_video: bool, export_mesh: bool, dump_video_path: str, dump_mesh_path: str, image_path_back=None):
source_size = self.cfg.inferrer.source_size
render_size = self.cfg.inferrer.render_size
render_views = self.cfg.inferrer.render_views
render_fps = self.cfg.inferrer.render_fps
mesh_size = self.cfg.inferrer.mesh_size
mesh_thres = self.cfg.inferrer.mesh_thres
frame_size = self.cfg.inferrer.frame_size
source_cam_dist = self.cfg.inferrer.source_cam_dist if source_cam_dist is None else source_cam_dist
image_format = self.cfg.inferrer.image_format
image = self.open_image(image_path, source_size)
if image_path_back is None:
back_image = self.open_image(image_path.replace('front', 'back'), source_size) if self.cfg.double_sided else None
else:
back_image = self.open_image(image_path_back, source_size) if self.cfg.double_sided else None
with torch.no_grad():
planes = self.infer_planes(image, source_cam_dist=source_cam_dist, back_image=back_image)
results = {}
if export_video:
frames = self.infer_video(planes, frame_size=frame_size, render_size=render_size, render_views=render_views, render_fps=render_fps, dump_video_path=dump_video_path,
image_format=image_format)
results.update({
'frames': frames,
})
if export_mesh:
mesh = self.infer_mesh(planes, mesh_size=mesh_size, mesh_thres=mesh_thres, dump_mesh_path=dump_mesh_path)
results.update({
'mesh': mesh,
})
def data_init(self):
image_paths = []
if os.path.isfile(self.cfg.image_input):
omit_prefix = os.path.dirname(self.cfg.image_input)
image_paths.append(self.cfg.image_input)
else:
omit_prefix = self.cfg.image_input
if self.cfg.double_sided: # double sided
walk_path = os.path.join(self.cfg.image_input, 'front')
else:
walk_path = self.cfg.image_input
for root, dirs, files in os.walk(walk_path):
for file in files:
if file.endswith('.png'):
image_paths.append(os.path.join(root, file))
image_paths.sort()
# alloc to each DDP worker
image_paths = image_paths[self.accelerator.process_index::self.accelerator.num_processes]
return image_paths, omit_prefix
def open_image(self, image_path, source_size):
# prepare image: [1, C_img, H_img, W_img], 0-1 scale
image = torch.from_numpy(np.array(Image.open(image_path))).to(self.device)
image = image.permute(2, 0, 1).unsqueeze(0) / 255.0
if image.shape[1] == 4: # RGBA
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
image = torch.clamp(image, 0, 1)
return image
def infer(self):
image_paths, omit_prefix = self.data_init()
for image_path in tqdm(image_paths, disable=not self.accelerator.is_local_main_process):
# prepare dump paths
image_name = os.path.basename(image_path)
uid = image_name.split('.')[0]
subdir_path = os.path.dirname(image_path).replace(omit_prefix, '')
subdir_path = subdir_path[1:] if subdir_path.startswith('/') else subdir_path
dump_video_path = os.path.join(
self.cfg.video_dump,
subdir_path,
f'{uid}.mov',
)
dump_mesh_path = os.path.join(
self.cfg.mesh_dump,
subdir_path,
f'{uid}.ply',
)
self.infer_single(
image_path,
source_cam_dist=None,
export_video=self.cfg.export_video,
export_mesh=self.cfg.export_mesh,
dump_video_path=dump_video_path,
dump_mesh_path=dump_mesh_path,
)
|