t5-ft-demo / instruct_dv_tuned.py
alakxender's picture
it
cd9f86b
import random
import numpy as np
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
import spaces
# Available models
MODEL_OPTIONS_INSTRUCT_TUNED = {
"EXT1 Model": "alakxender/flan-t5-base-alpaca-dv-ext"
}
# Cache for loaded models/tokenizers
MODEL_CACHE = {}
def get_model_and_tokenizer(model_dir):
if model_dir not in MODEL_CACHE:
print(f"Loading model: {model_dir}")
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = T5ForConditionalGeneration.from_pretrained(model_dir)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Moving model to device: {device}")
model.to(device)
MODEL_CACHE[model_dir] = (tokenizer, model)
return MODEL_CACHE[model_dir]
@spaces.GPU()
def generate_response_tuned(instruction, input_text, seed, model_choice,max_tokens, temperature, num_beams):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
model_dir = MODEL_OPTIONS_INSTRUCT_TUNED[model_choice]
tokenizer, model = get_model_and_tokenizer(model_dir)
combined_input = f"{instruction.strip()} {input_text.strip()}" if input_text else instruction.strip()
inputs = tokenizer(
combined_input,
return_tensors="pt",
truncation=True
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inputs = {k: v.to(device) for k, v in inputs.items()}
gen_kwargs = {
**inputs,
"max_length":max_tokens,
"num_beams":num_beams,
"do_sample":(temperature > 0.0),
"temperature":temperature,
"repetition_penalty":1.2,
"top_p":0.95,
"top_k":50
}
with torch.no_grad():
outputs = model.generate(**gen_kwargs)
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Trim to the last period
if '.' in decoded_output:
last_period = decoded_output.rfind('.')
decoded_output = decoded_output[:last_period+1]
decoded_output = ' '.join(decoded_output.split())
return decoded_output