Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
cd9f86b
1
Parent(s):
d5be7c6
it
Browse files- app.py +48 -3
- instruct_dv.py +4 -3
- instruct_dv_tuned.py +68 -0
app.py
CHANGED
@@ -3,7 +3,8 @@ import gradio as gr
|
|
3 |
from typo_check import css, process_input,MODEL_OPTIONS_TYPO
|
4 |
from title_gen import generate_title, MODEL_OPTIONS_TITLE
|
5 |
from content_gen import generate_content, MODEL_OPTIONS_CONTENT, get_default_prompt
|
6 |
-
from instruct_dv import generate_response, MODEL_OPTIONS_INSTRUCT
|
|
|
7 |
from en_dv_latin import translate, MODEL_OPTIONS_TRANSLATE
|
8 |
|
9 |
def update_textbox_direction(direction):
|
@@ -216,14 +217,15 @@ All outputs generated are synthetic, created using fine-tuned models for experim
|
|
216 |
with gr.Row():
|
217 |
model_choice = gr.Dropdown(choices=list(MODEL_OPTIONS_INSTRUCT.keys()), value=list(MODEL_OPTIONS_INSTRUCT.keys())[0], label="Model")
|
218 |
with gr.Row():
|
|
|
219 |
seed = gr.Slider(0, 10000, value=42, step=1, label="Random Seed")
|
220 |
-
use_sampling = gr.Checkbox(label="Use Sampling (Creative/Random)", value=
|
221 |
with gr.Row():
|
222 |
generated_response = gr.Textbox(label="Model Response", rtl=True, elem_classes="textbox1")
|
223 |
generate_btn = gr.Button("Generate Response")
|
224 |
generate_btn.click(
|
225 |
fn=generate_response,
|
226 |
-
inputs=[instruction, input_text, seed, use_sampling, model_choice],
|
227 |
outputs=generated_response
|
228 |
)
|
229 |
gr.Examples(
|
@@ -240,6 +242,49 @@ All outputs generated are synthetic, created using fine-tuned models for experim
|
|
240 |
- This tab allows you to give instructions to the model, optionally with input text, for general-purpose generation or task following in Dhivehi.
|
241 |
- Try different seeds or enable sampling for more creative outputs.
|
242 |
- The model is experimental and may not always follow instructions perfectly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
""")
|
244 |
|
245 |
with gr.Tab("Translation Tasks"):
|
|
|
3 |
from typo_check import css, process_input,MODEL_OPTIONS_TYPO
|
4 |
from title_gen import generate_title, MODEL_OPTIONS_TITLE
|
5 |
from content_gen import generate_content, MODEL_OPTIONS_CONTENT, get_default_prompt
|
6 |
+
from instruct_dv import generate_response, MODEL_OPTIONS_INSTRUCT
|
7 |
+
from instruct_dv_tuned import generate_response_tuned, MODEL_OPTIONS_INSTRUCT_TUNED
|
8 |
from en_dv_latin import translate, MODEL_OPTIONS_TRANSLATE
|
9 |
|
10 |
def update_textbox_direction(direction):
|
|
|
217 |
with gr.Row():
|
218 |
model_choice = gr.Dropdown(choices=list(MODEL_OPTIONS_INSTRUCT.keys()), value=list(MODEL_OPTIONS_INSTRUCT.keys())[0], label="Model")
|
219 |
with gr.Row():
|
220 |
+
max_tokens_slider = gr.Slider(10, 512, value=256, label="Max New Tokens")
|
221 |
seed = gr.Slider(0, 10000, value=42, step=1, label="Random Seed")
|
222 |
+
use_sampling = gr.Checkbox(label="Use Sampling (Creative/Random)", value=False)
|
223 |
with gr.Row():
|
224 |
generated_response = gr.Textbox(label="Model Response", rtl=True, elem_classes="textbox1")
|
225 |
generate_btn = gr.Button("Generate Response")
|
226 |
generate_btn.click(
|
227 |
fn=generate_response,
|
228 |
+
inputs=[instruction, input_text, seed, use_sampling, model_choice,max_tokens_slider,num_beams_slider],
|
229 |
outputs=generated_response
|
230 |
)
|
231 |
gr.Examples(
|
|
|
242 |
- This tab allows you to give instructions to the model, optionally with input text, for general-purpose generation or task following in Dhivehi.
|
243 |
- Try different seeds or enable sampling for more creative outputs.
|
244 |
- The model is experimental and may not always follow instructions perfectly.
|
245 |
+
""")
|
246 |
+
|
247 |
+
with gr.Tab("Instruction Tuned"):
|
248 |
+
gr.Markdown("# <center>Dhivehi Instruction-Tuned Model</center>")
|
249 |
+
gr.Markdown("Generate answers by providing a custom instruction and optional input. This instruction-tuned model is designed for better format awareness, task generalization, and stronger alignment with user intent.")
|
250 |
+
with gr.Row():
|
251 |
+
instruction = gr.Textbox(lines=2, label="Instruction", rtl=True, elem_classes="textbox1")
|
252 |
+
with gr.Row():
|
253 |
+
input_text = gr.Textbox(lines=2, label="Input Text (optional)", rtl=True, elem_classes="textbox1")
|
254 |
+
with gr.Row():
|
255 |
+
model_choice = gr.Dropdown(choices=list(MODEL_OPTIONS_INSTRUCT_TUNED.keys()), value=list(MODEL_OPTIONS_INSTRUCT_TUNED.keys())[0], label="Model")
|
256 |
+
with gr.Row():
|
257 |
+
max_tokens = gr.Slider(64, 1024, value=768, step=16, label="Max New Tokens")
|
258 |
+
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
|
259 |
+
num_beams = gr.Slider(1, 8, value=4, step=1, label="Number of Beams")
|
260 |
+
with gr.Row():
|
261 |
+
generated_response = gr.Textbox(label="Model Response", rtl=True, elem_classes="textbox1")
|
262 |
+
generate_btn = gr.Button("Generate Response")
|
263 |
+
generate_btn.click(
|
264 |
+
fn=generate_response_tuned,
|
265 |
+
inputs=[instruction, input_text, seed, model_choice,max_tokens,temperature,num_beams],
|
266 |
+
outputs=generated_response
|
267 |
+
)
|
268 |
+
gr.Examples(
|
269 |
+
examples=[
|
270 |
+
["ދީފައިވާ މައުޟޫޢާ ބެހޭގޮތުން ކުރު ޕެރެގްރާފެއް ލިޔެލާށެވެ.","އިއާދަކުރަނިވި ހަކަތަ ބޭނުންކުރުމުގެ މުހިންމުކަން"],
|
271 |
+
["ދިގުމިނުގެ މިންވަރުތައް ބަދަލުކުރުން.","1 ކިލޯމީޓަރ"],
|
272 |
+
["ދެ މޯބައިލް ފޯނެއްގެ ފީޗާސް އަޅާކިޔާށެވެ.","އައިފޯން 11 ޕްރޯ އަދި ސެމްސަންގް ގެލެކްސީ އެސް20 އަލްޓްރާ"],
|
273 |
+
["މަސައްކަތްތައް ފައިދާހުރި ގޮތެއްގައި ހަވާލުކުރުމަށް އަޅަންޖެހޭ ފިޔަވަޅުތައް ބަޔާންކުރުން.",""],
|
274 |
+
["އާ މޯބައިލް އެޕް ޕްރޮމޯޓް ކުރުމަށް މާކެޓިންގ ސްޓްރެޓެޖީތަކުގެ ލިސްޓެއް އުފެއްދުން.",""],
|
275 |
+
["ދިގުމިނުގައި 10ސެންޓިމީޓަރު އަދި ފުޅާމިނަކީ 5ސެންޓިމީޓަރު ހުންނަ ރެކްޓަންގްލަރެއްގެ ސަރަހައްދު ހިސާބުކުރުން.",""],
|
276 |
+
["ތިރީގައިވާ ބަސްފުޅު ތެދެއް ނުވަތަ ދޮގުގެ ގޮތުގައި ގިންތިކުރުން.","ސުޕްރީމް ކޯޓަކީ އެމެރިކާގެ އެންމެ މަތީ ކޯޓެވެ."],
|
277 |
+
],
|
278 |
+
inputs=[instruction, input_text],
|
279 |
+
)
|
280 |
+
gr.Markdown("""
|
281 |
+
### 📝 Notes:
|
282 |
+
- This model is **instruction-tuned** using Dhivehi data, designed to follow a wide variety of instructions.
|
283 |
+
- Provide both an instruction and input for best results, but input is optional for tasks like open-ended generation.
|
284 |
+
- Use **temperature** > 0 for more diverse outputs, or set to **0** for deterministic answers.
|
285 |
+
- **Number of beams** increases quality at the cost of speed.
|
286 |
+
- Assuming the model will have **better format awareness**, can handle **multiple task types**, and often **align more closely with your intent**. (Have to test)
|
287 |
+
- This model is experimental and may not always follow instructions perfectly.
|
288 |
""")
|
289 |
|
290 |
with gr.Tab("Translation Tasks"):
|
instruct_dv.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import random
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
from transformers import
|
5 |
import spaces
|
6 |
|
7 |
|
@@ -17,7 +17,7 @@ MODEL_CACHE = {}
|
|
17 |
def get_model_and_tokenizer(model_dir):
|
18 |
if model_dir not in MODEL_CACHE:
|
19 |
print(f"Loading model: {model_dir}")
|
20 |
-
tokenizer =
|
21 |
model = T5ForConditionalGeneration.from_pretrained(model_dir)
|
22 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
print(f"Moving model to device: {device}")
|
@@ -29,7 +29,7 @@ max_input_length = 256
|
|
29 |
max_output_length = 256
|
30 |
|
31 |
@spaces.GPU()
|
32 |
-
def generate_response(instruction, input_text, seed, use_sampling, model_choice):
|
33 |
random.seed(seed)
|
34 |
np.random.seed(seed)
|
35 |
torch.manual_seed(seed)
|
@@ -52,6 +52,7 @@ def generate_response(instruction, input_text, seed, use_sampling, model_choice)
|
|
52 |
gen_kwargs = {
|
53 |
"input_ids": inputs["input_ids"],
|
54 |
"attention_mask": inputs["attention_mask"],
|
|
|
55 |
"max_length": max_output_length,
|
56 |
"no_repeat_ngram_size": 3,
|
57 |
"repetition_penalty": 1.5,
|
|
|
1 |
import random
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
5 |
import spaces
|
6 |
|
7 |
|
|
|
17 |
def get_model_and_tokenizer(model_dir):
|
18 |
if model_dir not in MODEL_CACHE:
|
19 |
print(f"Loading model: {model_dir}")
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
21 |
model = T5ForConditionalGeneration.from_pretrained(model_dir)
|
22 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
print(f"Moving model to device: {device}")
|
|
|
29 |
max_output_length = 256
|
30 |
|
31 |
@spaces.GPU()
|
32 |
+
def generate_response(instruction, input_text, seed, use_sampling, model_choice,max_tokens,num_beams):
|
33 |
random.seed(seed)
|
34 |
np.random.seed(seed)
|
35 |
torch.manual_seed(seed)
|
|
|
52 |
gen_kwargs = {
|
53 |
"input_ids": inputs["input_ids"],
|
54 |
"attention_mask": inputs["attention_mask"],
|
55 |
+
"max_new_tokens":max_tokens,
|
56 |
"max_length": max_output_length,
|
57 |
"no_repeat_ngram_size": 3,
|
58 |
"repetition_penalty": 1.5,
|
instruct_dv_tuned.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
|
8 |
+
# Available models
|
9 |
+
MODEL_OPTIONS_INSTRUCT_TUNED = {
|
10 |
+
"EXT1 Model": "alakxender/flan-t5-base-alpaca-dv-ext"
|
11 |
+
}
|
12 |
+
|
13 |
+
# Cache for loaded models/tokenizers
|
14 |
+
MODEL_CACHE = {}
|
15 |
+
|
16 |
+
def get_model_and_tokenizer(model_dir):
|
17 |
+
if model_dir not in MODEL_CACHE:
|
18 |
+
print(f"Loading model: {model_dir}")
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
20 |
+
model = T5ForConditionalGeneration.from_pretrained(model_dir)
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
print(f"Moving model to device: {device}")
|
23 |
+
model.to(device)
|
24 |
+
MODEL_CACHE[model_dir] = (tokenizer, model)
|
25 |
+
return MODEL_CACHE[model_dir]
|
26 |
+
|
27 |
+
@spaces.GPU()
|
28 |
+
def generate_response_tuned(instruction, input_text, seed, model_choice,max_tokens, temperature, num_beams):
|
29 |
+
random.seed(seed)
|
30 |
+
np.random.seed(seed)
|
31 |
+
torch.manual_seed(seed)
|
32 |
+
if torch.cuda.is_available():
|
33 |
+
torch.cuda.manual_seed_all(seed)
|
34 |
+
|
35 |
+
model_dir = MODEL_OPTIONS_INSTRUCT_TUNED[model_choice]
|
36 |
+
tokenizer, model = get_model_and_tokenizer(model_dir)
|
37 |
+
|
38 |
+
combined_input = f"{instruction.strip()} {input_text.strip()}" if input_text else instruction.strip()
|
39 |
+
inputs = tokenizer(
|
40 |
+
combined_input,
|
41 |
+
return_tensors="pt",
|
42 |
+
truncation=True
|
43 |
+
)
|
44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
46 |
+
|
47 |
+
gen_kwargs = {
|
48 |
+
**inputs,
|
49 |
+
"max_length":max_tokens,
|
50 |
+
"num_beams":num_beams,
|
51 |
+
"do_sample":(temperature > 0.0),
|
52 |
+
"temperature":temperature,
|
53 |
+
"repetition_penalty":1.2,
|
54 |
+
"top_p":0.95,
|
55 |
+
"top_k":50
|
56 |
+
}
|
57 |
+
|
58 |
+
with torch.no_grad():
|
59 |
+
outputs = model.generate(**gen_kwargs)
|
60 |
+
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
61 |
+
|
62 |
+
# Trim to the last period
|
63 |
+
if '.' in decoded_output:
|
64 |
+
last_period = decoded_output.rfind('.')
|
65 |
+
decoded_output = decoded_output[:last_period+1]
|
66 |
+
|
67 |
+
decoded_output = ' '.join(decoded_output.split())
|
68 |
+
return decoded_output
|