ajsbsd's picture
Create app.py
1ebd84a verified
raw
history blame
19.4 kB
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
from PIL import Image
import os
import gc
import time
from typing import Optional, Tuple
from huggingface_hub import hf_hub_download
import requests
# Global pipeline variables
txt2img_pipe = None
img2img_pipe = None
device = "cuda" if torch.cuda.is_available() else "cpu"
# Hugging Face model configuration
MODEL_REPO = "ajsbsd/CyberRealistic-Pony"
MODEL_FILENAME = "cyberrealisticPony_v110.safetensors"
LOCAL_MODEL_PATH = "./models/cyberrealisticPony_v110.safetensors"
def clear_memory():
"""Clear GPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def download_model():
"""Download model from Hugging Face if not already cached"""
try:
# Create models directory if it doesn't exist
os.makedirs("./models", exist_ok=True)
# Check if model already exists locally
if os.path.exists(LOCAL_MODEL_PATH):
print(f"Model already exists at {LOCAL_MODEL_PATH}")
return LOCAL_MODEL_PATH
print(f"Downloading model from {MODEL_REPO}/{MODEL_FILENAME}...")
print("This may take a while on first run...")
# Download the model file
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
local_dir="./models",
local_dir_use_symlinks=False,
resume_download=True
)
print(f"Model downloaded successfully to {model_path}")
return model_path
except Exception as e:
print(f"Error downloading model: {e}")
print("Attempting to use cached version or fallback...")
# Try to use Hugging Face cache directly
try:
cached_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
resume_download=True
)
print(f"Using cached model at {cached_path}")
return cached_path
except Exception as cache_error:
print(f"Cache fallback failed: {cache_error}")
return None
def load_models():
"""Load both text2img and img2img pipelines with Hugging Face integration"""
global txt2img_pipe, img2img_pipe
# Download model if needed
model_path = download_model()
if model_path is None:
print("Failed to download or locate model file")
return None, None
if not os.path.exists(model_path):
print(f"Model file not found after download: {model_path}")
return None, None
if txt2img_pipe is None:
try:
print("Loading CyberRealistic Pony Text2Img model...")
txt2img_pipe = StableDiffusionXLPipeline.from_single_file(
model_path,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
)
# Memory optimizations
txt2img_pipe.enable_attention_slicing()
if device == "cuda":
try:
txt2img_pipe.enable_model_cpu_offload()
print("Text2Img CPU offload enabled")
except Exception as e:
print(f"Text2Img CPU offload failed: {e}")
txt2img_pipe = txt2img_pipe.to(device)
else:
txt2img_pipe = txt2img_pipe.to(device)
print("Text2Img model loaded successfully!")
except Exception as e:
print(f"Error loading Text2Img model: {e}")
return None, None
if img2img_pipe is None:
try:
print("Loading CyberRealistic Pony Img2Img model...")
img2img_pipe = StableDiffusionXLImg2ImgPipeline.from_single_file(
model_path,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
)
# Memory optimizations
img2img_pipe.enable_attention_slicing()
if device == "cuda":
try:
img2img_pipe.enable_model_cpu_offload()
print("Img2Img CPU offload enabled")
except Exception as e:
print(f"Img2Img CPU offload failed: {e}")
img2img_pipe = img2img_pipe.to(device)
else:
img2img_pipe = img2img_pipe.to(device)
print("Img2Img model loaded successfully!")
except Exception as e:
print(f"Error loading Img2Img model: {e}")
return txt2img_pipe, None
return txt2img_pipe, img2img_pipe
def enhance_prompt(prompt: str, add_quality_tags: bool = True) -> str:
"""Enhance prompt with Pony-style tags"""
if not prompt.strip():
return prompt
# Don't add tags if already present
if prompt.startswith("score_") or not add_quality_tags:
return prompt
quality_tags = "score_9, score_8_up, score_7_up, masterpiece, best quality, highly detailed"
return f"{quality_tags}, {prompt}"
def validate_dimensions(width: int, height: int) -> Tuple[int, int]:
"""Ensure dimensions are valid for SDXL"""
# SDXL works best with dimensions divisible by 64
width = ((width + 63) // 64) * 64
height = ((height + 63) // 64) * 64
# Ensure reasonable limits
width = max(512, min(1536, width))
height = max(512, min(1536, height))
return width, height
def generate_txt2img(prompt, negative_prompt, num_steps, guidance_scale, width, height, seed, add_quality_tags):
"""Generate image from text prompt with enhanced error handling"""
global txt2img_pipe
if not prompt.strip():
return None, "Please enter a prompt"
# Load models if not already loaded
if txt2img_pipe is None:
txt2img_pipe, _ = load_models()
if txt2img_pipe is None:
return None, "Failed to load Text2Img model. Please check your internet connection and try again."
try:
# Clear memory before generation
clear_memory()
# Validate and fix dimensions
width, height = validate_dimensions(width, height)
# Set seed for reproducibility
generator = None
if seed != -1:
generator = torch.Generator(device=device).manual_seed(int(seed))
# Enhance prompt
enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
print(f"Generating with prompt: {enhanced_prompt[:100]}...")
start_time = time.time()
# Generate image
with torch.no_grad():
result = txt2img_pipe(
prompt=enhanced_prompt,
negative_prompt=negative_prompt or "",
num_inference_steps=int(num_steps),
guidance_scale=float(guidance_scale),
width=width,
height=height,
generator=generator
)
generation_time = time.time() - start_time
status = f"Text2Img: Generated successfully in {generation_time:.1f}s (Size: {width}x{height})"
return result.images[0], status
except Exception as e:
error_msg = f"Text2Img generation failed: {str(e)}"
print(error_msg)
return None, error_msg
finally:
clear_memory()
def generate_img2img(input_image, prompt, negative_prompt, num_steps, guidance_scale, strength, seed, add_quality_tags):
"""Generate image from input image + text prompt with enhanced error handling"""
global img2img_pipe
if input_image is None:
return None, "Please upload an input image for Img2Img"
if not prompt.strip():
return None, "Please enter a prompt"
# Load models if not already loaded
if img2img_pipe is None:
_, img2img_pipe = load_models()
if img2img_pipe is None:
return None, "Failed to load Img2Img model. Please check your internet connection and try again."
try:
# Clear memory before generation
clear_memory()
# Set seed for reproducibility
generator = None
if seed != -1:
generator = torch.Generator(device=device).manual_seed(int(seed))
# Enhance prompt
enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
# Process input image
if isinstance(input_image, Image.Image):
# Ensure RGB format
if input_image.mode != 'RGB':
input_image = input_image.convert('RGB')
# Resize to reasonable dimensions while maintaining aspect ratio
original_size = input_image.size
max_size = 1024
input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
# Ensure dimensions are divisible by 64
w, h = input_image.size
w, h = validate_dimensions(w, h)
input_image = input_image.resize((w, h), Image.Resampling.LANCZOS)
print(f"Generating with prompt: {enhanced_prompt[:100]}...")
start_time = time.time()
# Generate image
with torch.no_grad():
result = img2img_pipe(
prompt=enhanced_prompt,
negative_prompt=negative_prompt or "",
image=input_image,
num_inference_steps=int(num_steps),
guidance_scale=float(guidance_scale),
strength=float(strength),
generator=generator
)
generation_time = time.time() - start_time
status = f"Img2Img: Generated successfully in {generation_time:.1f}s (Strength: {strength})"
return result.images[0], status
except Exception as e:
error_msg = f"Img2Img generation failed: {str(e)}"
print(error_msg)
return None, error_msg
finally:
clear_memory()
# Default negative prompt (improved)
DEFAULT_NEGATIVE = """
(low quality:1.4), (worst quality:1.4), (bad quality:1.3), (normal quality:1.2), lowres, jpeg artifacts, blurry, noisy, ugly, deformed, disfigured, malformed, poorly drawn, bad art, amateur, render, 3D, cgi,
(text, signature, watermark, username, copyright:1.5),
(extra limbs:1.5), (missing limbs:1.5), (extra fingers:1.5), (missing fingers:1.5), (mutated hands:1.5), (bad hands:1.4), (poorly drawn hands:1.3), (ugly hands:1.2),
(bad anatomy:1.4), (deformed body:1.3), (unnatural body:1.2), (cross-eyed:1.3), (skewed eyes:1.3), (imperfect eyes:1.2), (ugly eyes:1.2), (asymmetrical face:1.2), (unnatural face:1.2),
(blush:1.1), (shadow on skin:1.1), (shaded skin:1.1), (dark skin:1.1),
abstract, simplified, unrealistic, impressionistic, cartoon, anime, drawing, sketch, illustration, painting, censored, grayscale, monochrome, out of frame, cropped, distorted.
"""
# Create Gradio interface with enhanced styling
with gr.Blocks(
title="CyberRealistic Pony Image Generator",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.tab-nav button {
font-size: 16px;
font-weight: bold;
}
"""
) as demo:
gr.Markdown("""
# 🎨 CyberRealistic Pony Image Generator (Hugging Face Edition)
Generate high-quality images using the CyberRealistic Pony SDXL model from Hugging Face.
**Features:**
- 🎨 Text-to-Image generation
- 🖼️ Image-to-Image transformation
- 🎯 Automatic quality tag enhancement
- ⚡ Memory optimized for better performance
- 🤗 Auto-downloads model from Hugging Face
**Note:** On first run, the model will be downloaded from Hugging Face (this may take a few minutes).
""")
with gr.Tabs():
# Text2Image Tab
with gr.TabItem("🎨 Text to Image"):
with gr.Row():
with gr.Column(scale=1):
# Input controls for Text2Img
txt2img_prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your image description...",
value="beautiful landscape with mountains and lake at sunset",
lines=3
)
txt2img_negative = gr.Textbox(
label="Negative Prompt",
value=DEFAULT_NEGATIVE,
lines=3
)
txt2img_quality_tags = gr.Checkbox(
label="Add Quality Tags",
value=True
)
with gr.Row():
txt2img_steps = gr.Slider(
minimum=10,
maximum=50,
value=25,
step=1,
label="Inference Steps"
)
txt2img_guidance = gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.5,
label="Guidance Scale"
)
with gr.Row():
txt2img_width = gr.Slider(
minimum=512,
maximum=1536,
value=1024,
step=64,
label="Width"
)
txt2img_height = gr.Slider(
minimum=512,
maximum=1536,
value=1024,
step=64,
label="Height"
)
txt2img_seed = gr.Number(
label="Seed (-1 for random)",
value=-1,
precision=0
)
txt2img_btn = gr.Button("🎨 Generate Image", variant="primary")
with gr.Column(scale=2):
# Output for Text2Img
txt2img_output = gr.Image(
label="Generated Image",
type="pil",
height=600
)
txt2img_status = gr.Textbox(label="Status", interactive=False)
# Image2Image Tab
with gr.TabItem("🖼️ Image to Image"):
with gr.Row():
with gr.Column(scale=1):
# Input controls for Img2Img
img2img_input = gr.Image(
label="Input Image",
type="pil",
height=300
)
img2img_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe how to modify the image...",
value="in the style of a digital painting, vibrant colors",
lines=3
)
img2img_negative = gr.Textbox(
label="Negative Prompt",
value=DEFAULT_NEGATIVE,
lines=3
)
img2img_quality_tags = gr.Checkbox(
label="Add Quality Tags",
value=True
)
with gr.Row():
img2img_steps = gr.Slider(
minimum=10,
maximum=50,
value=25,
step=1,
label="Inference Steps"
)
img2img_guidance = gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.5,
label="Guidance Scale"
)
img2img_strength = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.75,
step=0.05,
label="Denoising Strength (Lower = more like input, Higher = more creative)"
)
img2img_seed = gr.Number(
label="Seed (-1 for random)",
value=-1,
precision=0
)
img2img_btn = gr.Button("🖼️ Transform Image", variant="primary")
with gr.Column(scale=2):
# Output for Img2Img
img2img_output = gr.Image(
label="Generated Image",
type="pil",
height=600
)
img2img_status = gr.Textbox(label="Status", interactive=False)
# Event handlers
txt2img_btn.click(
fn=generate_txt2img,
inputs=[txt2img_prompt, txt2img_negative, txt2img_steps, txt2img_guidance,
txt2img_width, txt2img_height, txt2img_seed, txt2img_quality_tags],
outputs=[txt2img_output, txt2img_status]
)
img2img_btn.click(
fn=generate_img2img,
inputs=[img2img_input, img2img_prompt, img2img_negative, txt2img_steps, img2img_guidance,
img2img_strength, img2img_seed, img2img_quality_tags],
outputs=[img2img_output, img2img_status]
)
# Load models on startup
print("Initializing CyberRealistic Pony Generator (Hugging Face Edition)...")
print(f"Device: {device}")
print(f"Model Repository: {MODEL_REPO}")
print(f"Model File: {MODEL_FILENAME}")
# Pre-load models in a separate thread to avoid blocking startup
import threading
def preload_models():
"""Pre-load models in background"""
try:
print("Starting background model loading...")
load_models()
print("Background model loading completed!")
except Exception as e:
print(f"Background model loading failed: {e}")
# Start background loading
loading_thread = threading.Thread(target=preload_models, daemon=True)
loading_thread.start()
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)