Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,398 Bytes
1ebd84a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
from PIL import Image
import os
import gc
import time
from typing import Optional, Tuple
from huggingface_hub import hf_hub_download
import requests
# Global pipeline variables
txt2img_pipe = None
img2img_pipe = None
device = "cuda" if torch.cuda.is_available() else "cpu"
# Hugging Face model configuration
MODEL_REPO = "ajsbsd/CyberRealistic-Pony"
MODEL_FILENAME = "cyberrealisticPony_v110.safetensors"
LOCAL_MODEL_PATH = "./models/cyberrealisticPony_v110.safetensors"
def clear_memory():
"""Clear GPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def download_model():
"""Download model from Hugging Face if not already cached"""
try:
# Create models directory if it doesn't exist
os.makedirs("./models", exist_ok=True)
# Check if model already exists locally
if os.path.exists(LOCAL_MODEL_PATH):
print(f"Model already exists at {LOCAL_MODEL_PATH}")
return LOCAL_MODEL_PATH
print(f"Downloading model from {MODEL_REPO}/{MODEL_FILENAME}...")
print("This may take a while on first run...")
# Download the model file
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
local_dir="./models",
local_dir_use_symlinks=False,
resume_download=True
)
print(f"Model downloaded successfully to {model_path}")
return model_path
except Exception as e:
print(f"Error downloading model: {e}")
print("Attempting to use cached version or fallback...")
# Try to use Hugging Face cache directly
try:
cached_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
resume_download=True
)
print(f"Using cached model at {cached_path}")
return cached_path
except Exception as cache_error:
print(f"Cache fallback failed: {cache_error}")
return None
def load_models():
"""Load both text2img and img2img pipelines with Hugging Face integration"""
global txt2img_pipe, img2img_pipe
# Download model if needed
model_path = download_model()
if model_path is None:
print("Failed to download or locate model file")
return None, None
if not os.path.exists(model_path):
print(f"Model file not found after download: {model_path}")
return None, None
if txt2img_pipe is None:
try:
print("Loading CyberRealistic Pony Text2Img model...")
txt2img_pipe = StableDiffusionXLPipeline.from_single_file(
model_path,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
)
# Memory optimizations
txt2img_pipe.enable_attention_slicing()
if device == "cuda":
try:
txt2img_pipe.enable_model_cpu_offload()
print("Text2Img CPU offload enabled")
except Exception as e:
print(f"Text2Img CPU offload failed: {e}")
txt2img_pipe = txt2img_pipe.to(device)
else:
txt2img_pipe = txt2img_pipe.to(device)
print("Text2Img model loaded successfully!")
except Exception as e:
print(f"Error loading Text2Img model: {e}")
return None, None
if img2img_pipe is None:
try:
print("Loading CyberRealistic Pony Img2Img model...")
img2img_pipe = StableDiffusionXLImg2ImgPipeline.from_single_file(
model_path,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
)
# Memory optimizations
img2img_pipe.enable_attention_slicing()
if device == "cuda":
try:
img2img_pipe.enable_model_cpu_offload()
print("Img2Img CPU offload enabled")
except Exception as e:
print(f"Img2Img CPU offload failed: {e}")
img2img_pipe = img2img_pipe.to(device)
else:
img2img_pipe = img2img_pipe.to(device)
print("Img2Img model loaded successfully!")
except Exception as e:
print(f"Error loading Img2Img model: {e}")
return txt2img_pipe, None
return txt2img_pipe, img2img_pipe
def enhance_prompt(prompt: str, add_quality_tags: bool = True) -> str:
"""Enhance prompt with Pony-style tags"""
if not prompt.strip():
return prompt
# Don't add tags if already present
if prompt.startswith("score_") or not add_quality_tags:
return prompt
quality_tags = "score_9, score_8_up, score_7_up, masterpiece, best quality, highly detailed"
return f"{quality_tags}, {prompt}"
def validate_dimensions(width: int, height: int) -> Tuple[int, int]:
"""Ensure dimensions are valid for SDXL"""
# SDXL works best with dimensions divisible by 64
width = ((width + 63) // 64) * 64
height = ((height + 63) // 64) * 64
# Ensure reasonable limits
width = max(512, min(1536, width))
height = max(512, min(1536, height))
return width, height
def generate_txt2img(prompt, negative_prompt, num_steps, guidance_scale, width, height, seed, add_quality_tags):
"""Generate image from text prompt with enhanced error handling"""
global txt2img_pipe
if not prompt.strip():
return None, "Please enter a prompt"
# Load models if not already loaded
if txt2img_pipe is None:
txt2img_pipe, _ = load_models()
if txt2img_pipe is None:
return None, "Failed to load Text2Img model. Please check your internet connection and try again."
try:
# Clear memory before generation
clear_memory()
# Validate and fix dimensions
width, height = validate_dimensions(width, height)
# Set seed for reproducibility
generator = None
if seed != -1:
generator = torch.Generator(device=device).manual_seed(int(seed))
# Enhance prompt
enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
print(f"Generating with prompt: {enhanced_prompt[:100]}...")
start_time = time.time()
# Generate image
with torch.no_grad():
result = txt2img_pipe(
prompt=enhanced_prompt,
negative_prompt=negative_prompt or "",
num_inference_steps=int(num_steps),
guidance_scale=float(guidance_scale),
width=width,
height=height,
generator=generator
)
generation_time = time.time() - start_time
status = f"Text2Img: Generated successfully in {generation_time:.1f}s (Size: {width}x{height})"
return result.images[0], status
except Exception as e:
error_msg = f"Text2Img generation failed: {str(e)}"
print(error_msg)
return None, error_msg
finally:
clear_memory()
def generate_img2img(input_image, prompt, negative_prompt, num_steps, guidance_scale, strength, seed, add_quality_tags):
"""Generate image from input image + text prompt with enhanced error handling"""
global img2img_pipe
if input_image is None:
return None, "Please upload an input image for Img2Img"
if not prompt.strip():
return None, "Please enter a prompt"
# Load models if not already loaded
if img2img_pipe is None:
_, img2img_pipe = load_models()
if img2img_pipe is None:
return None, "Failed to load Img2Img model. Please check your internet connection and try again."
try:
# Clear memory before generation
clear_memory()
# Set seed for reproducibility
generator = None
if seed != -1:
generator = torch.Generator(device=device).manual_seed(int(seed))
# Enhance prompt
enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
# Process input image
if isinstance(input_image, Image.Image):
# Ensure RGB format
if input_image.mode != 'RGB':
input_image = input_image.convert('RGB')
# Resize to reasonable dimensions while maintaining aspect ratio
original_size = input_image.size
max_size = 1024
input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
# Ensure dimensions are divisible by 64
w, h = input_image.size
w, h = validate_dimensions(w, h)
input_image = input_image.resize((w, h), Image.Resampling.LANCZOS)
print(f"Generating with prompt: {enhanced_prompt[:100]}...")
start_time = time.time()
# Generate image
with torch.no_grad():
result = img2img_pipe(
prompt=enhanced_prompt,
negative_prompt=negative_prompt or "",
image=input_image,
num_inference_steps=int(num_steps),
guidance_scale=float(guidance_scale),
strength=float(strength),
generator=generator
)
generation_time = time.time() - start_time
status = f"Img2Img: Generated successfully in {generation_time:.1f}s (Strength: {strength})"
return result.images[0], status
except Exception as e:
error_msg = f"Img2Img generation failed: {str(e)}"
print(error_msg)
return None, error_msg
finally:
clear_memory()
# Default negative prompt (improved)
DEFAULT_NEGATIVE = """
(low quality:1.4), (worst quality:1.4), (bad quality:1.3), (normal quality:1.2), lowres, jpeg artifacts, blurry, noisy, ugly, deformed, disfigured, malformed, poorly drawn, bad art, amateur, render, 3D, cgi,
(text, signature, watermark, username, copyright:1.5),
(extra limbs:1.5), (missing limbs:1.5), (extra fingers:1.5), (missing fingers:1.5), (mutated hands:1.5), (bad hands:1.4), (poorly drawn hands:1.3), (ugly hands:1.2),
(bad anatomy:1.4), (deformed body:1.3), (unnatural body:1.2), (cross-eyed:1.3), (skewed eyes:1.3), (imperfect eyes:1.2), (ugly eyes:1.2), (asymmetrical face:1.2), (unnatural face:1.2),
(blush:1.1), (shadow on skin:1.1), (shaded skin:1.1), (dark skin:1.1),
abstract, simplified, unrealistic, impressionistic, cartoon, anime, drawing, sketch, illustration, painting, censored, grayscale, monochrome, out of frame, cropped, distorted.
"""
# Create Gradio interface with enhanced styling
with gr.Blocks(
title="CyberRealistic Pony Image Generator",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.tab-nav button {
font-size: 16px;
font-weight: bold;
}
"""
) as demo:
gr.Markdown("""
# π¨ CyberRealistic Pony Image Generator (Hugging Face Edition)
Generate high-quality images using the CyberRealistic Pony SDXL model from Hugging Face.
**Features:**
- π¨ Text-to-Image generation
- πΌοΈ Image-to-Image transformation
- π― Automatic quality tag enhancement
- β‘ Memory optimized for better performance
- π€ Auto-downloads model from Hugging Face
**Note:** On first run, the model will be downloaded from Hugging Face (this may take a few minutes).
""")
with gr.Tabs():
# Text2Image Tab
with gr.TabItem("π¨ Text to Image"):
with gr.Row():
with gr.Column(scale=1):
# Input controls for Text2Img
txt2img_prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your image description...",
value="beautiful landscape with mountains and lake at sunset",
lines=3
)
txt2img_negative = gr.Textbox(
label="Negative Prompt",
value=DEFAULT_NEGATIVE,
lines=3
)
txt2img_quality_tags = gr.Checkbox(
label="Add Quality Tags",
value=True
)
with gr.Row():
txt2img_steps = gr.Slider(
minimum=10,
maximum=50,
value=25,
step=1,
label="Inference Steps"
)
txt2img_guidance = gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.5,
label="Guidance Scale"
)
with gr.Row():
txt2img_width = gr.Slider(
minimum=512,
maximum=1536,
value=1024,
step=64,
label="Width"
)
txt2img_height = gr.Slider(
minimum=512,
maximum=1536,
value=1024,
step=64,
label="Height"
)
txt2img_seed = gr.Number(
label="Seed (-1 for random)",
value=-1,
precision=0
)
txt2img_btn = gr.Button("π¨ Generate Image", variant="primary")
with gr.Column(scale=2):
# Output for Text2Img
txt2img_output = gr.Image(
label="Generated Image",
type="pil",
height=600
)
txt2img_status = gr.Textbox(label="Status", interactive=False)
# Image2Image Tab
with gr.TabItem("πΌοΈ Image to Image"):
with gr.Row():
with gr.Column(scale=1):
# Input controls for Img2Img
img2img_input = gr.Image(
label="Input Image",
type="pil",
height=300
)
img2img_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe how to modify the image...",
value="in the style of a digital painting, vibrant colors",
lines=3
)
img2img_negative = gr.Textbox(
label="Negative Prompt",
value=DEFAULT_NEGATIVE,
lines=3
)
img2img_quality_tags = gr.Checkbox(
label="Add Quality Tags",
value=True
)
with gr.Row():
img2img_steps = gr.Slider(
minimum=10,
maximum=50,
value=25,
step=1,
label="Inference Steps"
)
img2img_guidance = gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.5,
label="Guidance Scale"
)
img2img_strength = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.75,
step=0.05,
label="Denoising Strength (Lower = more like input, Higher = more creative)"
)
img2img_seed = gr.Number(
label="Seed (-1 for random)",
value=-1,
precision=0
)
img2img_btn = gr.Button("πΌοΈ Transform Image", variant="primary")
with gr.Column(scale=2):
# Output for Img2Img
img2img_output = gr.Image(
label="Generated Image",
type="pil",
height=600
)
img2img_status = gr.Textbox(label="Status", interactive=False)
# Event handlers
txt2img_btn.click(
fn=generate_txt2img,
inputs=[txt2img_prompt, txt2img_negative, txt2img_steps, txt2img_guidance,
txt2img_width, txt2img_height, txt2img_seed, txt2img_quality_tags],
outputs=[txt2img_output, txt2img_status]
)
img2img_btn.click(
fn=generate_img2img,
inputs=[img2img_input, img2img_prompt, img2img_negative, txt2img_steps, img2img_guidance,
img2img_strength, img2img_seed, img2img_quality_tags],
outputs=[img2img_output, img2img_status]
)
# Load models on startup
print("Initializing CyberRealistic Pony Generator (Hugging Face Edition)...")
print(f"Device: {device}")
print(f"Model Repository: {MODEL_REPO}")
print(f"Model File: {MODEL_FILENAME}")
# Pre-load models in a separate thread to avoid blocking startup
import threading
def preload_models():
"""Pre-load models in background"""
try:
print("Starting background model loading...")
load_models()
print("Background model loading completed!")
except Exception as e:
print(f"Background model loading failed: {e}")
# Start background loading
loading_thread = threading.Thread(target=preload_models, daemon=True)
loading_thread.start()
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |