File size: 19,398 Bytes
1ebd84a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
from PIL import Image
import os
import gc
import time
from typing import Optional, Tuple
from huggingface_hub import hf_hub_download
import requests

# Global pipeline variables
txt2img_pipe = None
img2img_pipe = None
device = "cuda" if torch.cuda.is_available() else "cpu"

# Hugging Face model configuration
MODEL_REPO = "ajsbsd/CyberRealistic-Pony"
MODEL_FILENAME = "cyberrealisticPony_v110.safetensors"
LOCAL_MODEL_PATH = "./models/cyberrealisticPony_v110.safetensors"

def clear_memory():
    """Clear GPU memory"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

def download_model():
    """Download model from Hugging Face if not already cached"""
    try:
        # Create models directory if it doesn't exist
        os.makedirs("./models", exist_ok=True)
        
        # Check if model already exists locally
        if os.path.exists(LOCAL_MODEL_PATH):
            print(f"Model already exists at {LOCAL_MODEL_PATH}")
            return LOCAL_MODEL_PATH
        
        print(f"Downloading model from {MODEL_REPO}/{MODEL_FILENAME}...")
        print("This may take a while on first run...")
        
        # Download the model file
        model_path = hf_hub_download(
            repo_id=MODEL_REPO,
            filename=MODEL_FILENAME,
            local_dir="./models",
            local_dir_use_symlinks=False,
            resume_download=True
        )
        
        print(f"Model downloaded successfully to {model_path}")
        return model_path
        
    except Exception as e:
        print(f"Error downloading model: {e}")
        print("Attempting to use cached version or fallback...")
        
        # Try to use Hugging Face cache directly
        try:
            cached_path = hf_hub_download(
                repo_id=MODEL_REPO,
                filename=MODEL_FILENAME,
                resume_download=True
            )
            print(f"Using cached model at {cached_path}")
            return cached_path
        except Exception as cache_error:
            print(f"Cache fallback failed: {cache_error}")
            return None

def load_models():
    """Load both text2img and img2img pipelines with Hugging Face integration"""
    global txt2img_pipe, img2img_pipe
    
    # Download model if needed
    model_path = download_model()
    
    if model_path is None:
        print("Failed to download or locate model file")
        return None, None
    
    if not os.path.exists(model_path):
        print(f"Model file not found after download: {model_path}")
        return None, None
    
    if txt2img_pipe is None:
        try:
            print("Loading CyberRealistic Pony Text2Img model...")
            txt2img_pipe = StableDiffusionXLPipeline.from_single_file(
                model_path,
                torch_dtype=torch.float16 if device == "cuda" else torch.float32,
                use_safetensors=True,
                variant="fp16" if device == "cuda" else None
            )
            
            # Memory optimizations
            txt2img_pipe.enable_attention_slicing()
            
            if device == "cuda":
                try:
                    txt2img_pipe.enable_model_cpu_offload()
                    print("Text2Img CPU offload enabled")
                except Exception as e:
                    print(f"Text2Img CPU offload failed: {e}")
                    txt2img_pipe = txt2img_pipe.to(device)
            else:
                txt2img_pipe = txt2img_pipe.to(device)
                    
            print("Text2Img model loaded successfully!")
            
        except Exception as e:
            print(f"Error loading Text2Img model: {e}")
            return None, None
    
    if img2img_pipe is None:
        try:
            print("Loading CyberRealistic Pony Img2Img model...")
            img2img_pipe = StableDiffusionXLImg2ImgPipeline.from_single_file(
                model_path,
                torch_dtype=torch.float16 if device == "cuda" else torch.float32,
                use_safetensors=True,
                variant="fp16" if device == "cuda" else None
            )
            
            # Memory optimizations
            img2img_pipe.enable_attention_slicing()
            
            if device == "cuda":
                try:
                    img2img_pipe.enable_model_cpu_offload()
                    print("Img2Img CPU offload enabled")
                except Exception as e:
                    print(f"Img2Img CPU offload failed: {e}")
                    img2img_pipe = img2img_pipe.to(device)
            else:
                img2img_pipe = img2img_pipe.to(device)
                    
            print("Img2Img model loaded successfully!")
            
        except Exception as e:
            print(f"Error loading Img2Img model: {e}")
            return txt2img_pipe, None
    
    return txt2img_pipe, img2img_pipe

def enhance_prompt(prompt: str, add_quality_tags: bool = True) -> str:
    """Enhance prompt with Pony-style tags"""
    if not prompt.strip():
        return prompt
        
    # Don't add tags if already present
    if prompt.startswith("score_") or not add_quality_tags:
        return prompt
        
    quality_tags = "score_9, score_8_up, score_7_up, masterpiece, best quality, highly detailed"
    return f"{quality_tags}, {prompt}"

def validate_dimensions(width: int, height: int) -> Tuple[int, int]:
    """Ensure dimensions are valid for SDXL"""
    # SDXL works best with dimensions divisible by 64
    width = ((width + 63) // 64) * 64
    height = ((height + 63) // 64) * 64
    
    # Ensure reasonable limits
    width = max(512, min(1536, width))
    height = max(512, min(1536, height))
    
    return width, height

def generate_txt2img(prompt, negative_prompt, num_steps, guidance_scale, width, height, seed, add_quality_tags):
    """Generate image from text prompt with enhanced error handling"""
    global txt2img_pipe
    
    if not prompt.strip():
        return None, "Please enter a prompt"
        
    # Load models if not already loaded
    if txt2img_pipe is None:
        txt2img_pipe, _ = load_models()
        if txt2img_pipe is None:
            return None, "Failed to load Text2Img model. Please check your internet connection and try again."
    
    try:
        # Clear memory before generation
        clear_memory()
        
        # Validate and fix dimensions
        width, height = validate_dimensions(width, height)
        
        # Set seed for reproducibility
        generator = None
        if seed != -1:
            generator = torch.Generator(device=device).manual_seed(int(seed))
        
        # Enhance prompt
        enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
        
        print(f"Generating with prompt: {enhanced_prompt[:100]}...")
        start_time = time.time()
        
        # Generate image
        with torch.no_grad():
            result = txt2img_pipe(
                prompt=enhanced_prompt,
                negative_prompt=negative_prompt or "",
                num_inference_steps=int(num_steps),
                guidance_scale=float(guidance_scale),
                width=width,
                height=height,
                generator=generator
            )
        
        generation_time = time.time() - start_time
        status = f"Text2Img: Generated successfully in {generation_time:.1f}s (Size: {width}x{height})"
        
        return result.images[0], status
        
    except Exception as e:
        error_msg = f"Text2Img generation failed: {str(e)}"
        print(error_msg)
        return None, error_msg
    finally:
        clear_memory()

def generate_img2img(input_image, prompt, negative_prompt, num_steps, guidance_scale, strength, seed, add_quality_tags):
    """Generate image from input image + text prompt with enhanced error handling"""
    global img2img_pipe
    
    if input_image is None:
        return None, "Please upload an input image for Img2Img"
    
    if not prompt.strip():
        return None, "Please enter a prompt"
        
    # Load models if not already loaded
    if img2img_pipe is None:
        _, img2img_pipe = load_models()
        if img2img_pipe is None:
            return None, "Failed to load Img2Img model. Please check your internet connection and try again."
    
    try:
        # Clear memory before generation
        clear_memory()
        
        # Set seed for reproducibility
        generator = None
        if seed != -1:
            generator = torch.Generator(device=device).manual_seed(int(seed))
        
        # Enhance prompt
        enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
        
        # Process input image
        if isinstance(input_image, Image.Image):
            # Ensure RGB format
            if input_image.mode != 'RGB':
                input_image = input_image.convert('RGB')
                
            # Resize to reasonable dimensions while maintaining aspect ratio
            original_size = input_image.size
            max_size = 1024
            input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
            
            # Ensure dimensions are divisible by 64
            w, h = input_image.size
            w, h = validate_dimensions(w, h)
            input_image = input_image.resize((w, h), Image.Resampling.LANCZOS)
        
        print(f"Generating with prompt: {enhanced_prompt[:100]}...")
        start_time = time.time()
        
        # Generate image
        with torch.no_grad():
            result = img2img_pipe(
                prompt=enhanced_prompt,
                negative_prompt=negative_prompt or "",
                image=input_image,
                num_inference_steps=int(num_steps),
                guidance_scale=float(guidance_scale),
                strength=float(strength),
                generator=generator
            )
        
        generation_time = time.time() - start_time
        status = f"Img2Img: Generated successfully in {generation_time:.1f}s (Strength: {strength})"
        
        return result.images[0], status
        
    except Exception as e:
        error_msg = f"Img2Img generation failed: {str(e)}"
        print(error_msg)
        return None, error_msg
    finally:
        clear_memory()

# Default negative prompt (improved)
DEFAULT_NEGATIVE = """
(low quality:1.4), (worst quality:1.4), (bad quality:1.3), (normal quality:1.2), lowres, jpeg artifacts, blurry, noisy, ugly, deformed, disfigured, malformed, poorly drawn, bad art, amateur, render, 3D, cgi, 
(text, signature, watermark, username, copyright:1.5), 
(extra limbs:1.5), (missing limbs:1.5), (extra fingers:1.5), (missing fingers:1.5), (mutated hands:1.5), (bad hands:1.4), (poorly drawn hands:1.3), (ugly hands:1.2), 
(bad anatomy:1.4), (deformed body:1.3), (unnatural body:1.2), (cross-eyed:1.3), (skewed eyes:1.3), (imperfect eyes:1.2), (ugly eyes:1.2), (asymmetrical face:1.2), (unnatural face:1.2), 
(blush:1.1), (shadow on skin:1.1), (shaded skin:1.1), (dark skin:1.1), 
abstract, simplified, unrealistic, impressionistic, cartoon, anime, drawing, sketch, illustration, painting, censored, grayscale, monochrome, out of frame, cropped, distorted.
"""

# Create Gradio interface with enhanced styling
with gr.Blocks(
    title="CyberRealistic Pony Image Generator", 
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {
        max-width: 1200px !important;
    }
    .tab-nav button {
        font-size: 16px;
        font-weight: bold;
    }
    """
) as demo:
    gr.Markdown("""
    # 🎨 CyberRealistic Pony Image Generator (Hugging Face Edition)
    
    Generate high-quality images using the CyberRealistic Pony SDXL model from Hugging Face.
    
    **Features:**
    - 🎨 Text-to-Image generation
    - πŸ–ΌοΈ Image-to-Image transformation
    - 🎯 Automatic quality tag enhancement
    - ⚑ Memory optimized for better performance
    - πŸ€— Auto-downloads model from Hugging Face
    
    **Note:** On first run, the model will be downloaded from Hugging Face (this may take a few minutes).
    """)
    
    with gr.Tabs():
        # Text2Image Tab
        with gr.TabItem("🎨 Text to Image"):
            with gr.Row():
                with gr.Column(scale=1):
                    # Input controls for Text2Img
                    txt2img_prompt = gr.Textbox(
                        label="Prompt",
                        placeholder="Enter your image description...",
                        value="beautiful landscape with mountains and lake at sunset",
                        lines=3
                    )
                    
                    txt2img_negative = gr.Textbox(
                        label="Negative Prompt",
                        value=DEFAULT_NEGATIVE,
                        lines=3
                    )
                    
                    txt2img_quality_tags = gr.Checkbox(
                        label="Add Quality Tags",
                        value=True
                    )
                    
                    with gr.Row():
                        txt2img_steps = gr.Slider(
                            minimum=10,
                            maximum=50,
                            value=25,
                            step=1,
                            label="Inference Steps"
                        )
                        
                        txt2img_guidance = gr.Slider(
                            minimum=1.0,
                            maximum=20.0,
                            value=7.5,
                            step=0.5,
                            label="Guidance Scale"
                        )
                    
                    with gr.Row():
                        txt2img_width = gr.Slider(
                            minimum=512,
                            maximum=1536,
                            value=1024,
                            step=64,
                            label="Width"
                        )
                        
                        txt2img_height = gr.Slider(
                            minimum=512,
                            maximum=1536,
                            value=1024,
                            step=64,
                            label="Height"
                        )
                    
                    txt2img_seed = gr.Number(
                        label="Seed (-1 for random)",
                        value=-1,
                        precision=0
                    )
                    
                    txt2img_btn = gr.Button("🎨 Generate Image", variant="primary")
                    
                with gr.Column(scale=2):
                    # Output for Text2Img
                    txt2img_output = gr.Image(
                        label="Generated Image", 
                        type="pil",
                        height=600
                    )
                    txt2img_status = gr.Textbox(label="Status", interactive=False)
        
        # Image2Image Tab
        with gr.TabItem("πŸ–ΌοΈ Image to Image"):
            with gr.Row():
                with gr.Column(scale=1):
                    # Input controls for Img2Img
                    img2img_input = gr.Image(
                        label="Input Image",
                        type="pil",
                        height=300
                    )
                    
                    img2img_prompt = gr.Textbox(
                        label="Prompt",
                        placeholder="Describe how to modify the image...",
                        value="in the style of a digital painting, vibrant colors",
                        lines=3
                    )
                    
                    img2img_negative = gr.Textbox(
                        label="Negative Prompt",
                        value=DEFAULT_NEGATIVE,
                        lines=3
                    )
                    
                    img2img_quality_tags = gr.Checkbox(
                        label="Add Quality Tags",
                        value=True
                    )
                    
                    with gr.Row():
                        img2img_steps = gr.Slider(
                            minimum=10,
                            maximum=50,
                            value=25,
                            step=1,
                            label="Inference Steps"
                        )
                        
                        img2img_guidance = gr.Slider(
                            minimum=1.0,
                            maximum=20.0,
                            value=7.5,
                            step=0.5,
                            label="Guidance Scale"
                        )
                    
                    img2img_strength = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.75,
                        step=0.05,
                        label="Denoising Strength (Lower = more like input, Higher = more creative)"
                    )
                    
                    img2img_seed = gr.Number(
                        label="Seed (-1 for random)",
                        value=-1,
                        precision=0
                    )
                    
                    img2img_btn = gr.Button("πŸ–ΌοΈ Transform Image", variant="primary")
                    
                with gr.Column(scale=2):
                    # Output for Img2Img
                    img2img_output = gr.Image(
                        label="Generated Image", 
                        type="pil",
                        height=600
                    )
                    img2img_status = gr.Textbox(label="Status", interactive=False)
    
    # Event handlers
    txt2img_btn.click(
        fn=generate_txt2img,
        inputs=[txt2img_prompt, txt2img_negative, txt2img_steps, txt2img_guidance, 
                txt2img_width, txt2img_height, txt2img_seed, txt2img_quality_tags],
        outputs=[txt2img_output, txt2img_status]
    )
    
    img2img_btn.click(
        fn=generate_img2img,
        inputs=[img2img_input, img2img_prompt, img2img_negative, txt2img_steps, img2img_guidance, 
                img2img_strength, img2img_seed, img2img_quality_tags],
        outputs=[img2img_output, img2img_status]
    )

# Load models on startup
print("Initializing CyberRealistic Pony Generator (Hugging Face Edition)...")
print(f"Device: {device}")
print(f"Model Repository: {MODEL_REPO}")
print(f"Model File: {MODEL_FILENAME}")

# Pre-load models in a separate thread to avoid blocking startup
import threading

def preload_models():
    """Pre-load models in background"""
    try:
        print("Starting background model loading...")
        load_models()
        print("Background model loading completed!")
    except Exception as e:
        print(f"Background model loading failed: {e}")

# Start background loading
loading_thread = threading.Thread(target=preload_models, daemon=True)
loading_thread.start()

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )