|
import os |
|
import time |
|
from typing import Literal |
|
import spaces |
|
import gradio as gr |
|
import modelscope_studio.components.antd as antd |
|
import modelscope_studio.components.antdx as antdx |
|
import modelscope_studio.components.base as ms |
|
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification |
|
from torchvision import transforms |
|
import torch |
|
from PIL import Image |
|
import numpy as np |
|
import io |
|
import logging |
|
from utils.utils import softmax, augment_image, convert_pil_to_bytes |
|
from utils.gradient import gradient_processing |
|
from utils.minmax import preprocess as minmax_preprocess |
|
from utils.ela import genELA as ELA |
|
from utils.wavelet import wavelet_blocking_noise_estimation |
|
from utils.bitplane import bit_plane_extractor |
|
|
|
|
|
from forensics.registry import register_model, MODEL_REGISTRY, ModelEntry |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
header_style = { |
|
"textAlign": 'center', |
|
"color": '#fff', |
|
"height": 64, |
|
"paddingInline": 48, |
|
"lineHeight": '64px', |
|
"backgroundColor": '#4096ff', |
|
} |
|
|
|
content_style = { |
|
"textAlign": 'center', |
|
"minHeight": 120, |
|
"lineHeight": '120px', |
|
"color": '#fff', |
|
"backgroundColor": '#0958d9', |
|
} |
|
|
|
sider_style = { |
|
"textAlign": 'center', |
|
"lineHeight": '120px', |
|
"color": '#fff', |
|
"backgroundColor": '#1677ff', |
|
} |
|
|
|
footer_style = { |
|
"textAlign": 'center', |
|
"color": '#fff', |
|
"backgroundColor": '#4096ff', |
|
} |
|
|
|
layout_style = { |
|
"borderRadius": 8, |
|
"overflow": 'hidden', |
|
"width": 'calc(100% - 8px)', |
|
"maxWidth": 'calc(100% - 8px)', |
|
} |
|
|
|
MODEL_PATHS = { |
|
"model_1": "haywoodsloan/ai-image-detector-deploy", |
|
"model_2": "Heem2/AI-vs-Real-Image-Detection", |
|
"model_3": "Organika/sdxl-detector", |
|
"model_4": "cmckinle/sdxl-flux-detector_v1.1", |
|
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model", |
|
"model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22", |
|
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", |
|
"model_7": "date3k2/vit-real-fake-classification-v4" |
|
} |
|
|
|
CLASS_NAMES = { |
|
"model_1": ['artificial', 'real'], |
|
"model_2": ['AI Image', 'Real Image'], |
|
"model_3": ['AI', 'Real'], |
|
"model_4": ['AI', 'Real'], |
|
"model_5": ['Realism', 'Deepfake'], |
|
"model_5b": ['Real', 'Deepfake'], |
|
"model_6": ['ai_gen', 'human'], |
|
"model_7": ['Fake', 'Real'], |
|
|
|
} |
|
|
|
QUICK_INTRO = """ |
|
### AI-Generated Content Detection: The Tipping Point |
|
|
|
Remember that high-stakes game of whack-a-mole between deepfakes and detection algorithms that the world leaders promised to fund and fight? Well, to no surprise, that battle ended with what seems like a quiet acceptance of defeat. Despite massive increases in 2024 for research and funding for detection systems, it came to no surprise to anyone when the largest public detection project to date was effectively rendered useless just weeks after release. |
|
|
|
Then came the sucker-punches. Month after month, SOTA models started dropping like they were on a release calendar: |
|
• Hyper-realistic voice clones reading your emotional tells |
|
• Zero-shot everything making reality checks irrelevant |
|
• Image models that upgraded "plausible" to "indistinguishable" overnight |
|
|
|
It was terrifying. Exhilarating. Hands-down the most fascinating existential rollercoaster since crypto crashed. And we all know why detection lost: **Defense always lags offense.** Pouring billions into bigger, slower models was like building thicker castle walls while the enemy developed drone strikes. |
|
|
|
The research exodus wasn't betrayal – it was sanity. Why battle an unwinnable arms race when there's actual progress to be made elsewhere? And let's be honest: we saw this coming. When has humanity ever resisted accelerating technology that promises... *interesting* applications? As the ancients wisely tweeted: 🔞 drives innovation. |
|
|
|
So what now? We pivot. |
|
✅ Stop pretending we'll ever "solve" deepfakes. Accept they'll keep evolving. |
|
✅ Learn from cybersecurity: Shift from impossible prevention to damage control |
|
✅ Embrace and strive for radical efficiency – 10X the output at 0.1X the resource burn |
|
|
|
But here's the silver lining, the hard-won wisdom, and the next chapter: efficiency. It's time to shift our focus from perpetual catch-up to smarter integration and acceptance. |
|
|
|
Because our current approach? Training mammoth models on volcanic-scale energy consumption to chase diminishing returns? That's the real deepfake we should be fighting. |
|
|
|
Next section: Practical, absurdly efficient alternatives already showing promise. It's not SOTA, but it just makes sense. ⚡ |
|
|
|
""" |
|
|
|
IMPLEMENTATION = """ |
|
### 1. **Shift away from the belief that more data leads to better results. Rather, focus on insight-driven and "quality over quantity" datasets in training.** |
|
* **Move Away from Terabyte-Scale Datasets**: Focus on **quality over quantity** by curating a smaller, highly diverse, and **labeled dataset** emphasizing edge cases and the latest AI generations. |
|
* **Active Learning**: Implement active learning techniques to iteratively select the most informative samples for human labeling, reducing dataset size while maintaining effectiveness. |
|
|
|
### 2. **Efficient Model Architectures** |
|
* **Adopt Lightweight, State-of-the-Art Models**: Explore models designed for efficiency like MobileNet, EfficientNet, or recent advancements in vision transformers (ViTs) tailored for forensic analysis. |
|
* **Transfer Learning with Fine-Tuning**: Leverage pre-trained models fine-tuned on your curated dataset to leverage general knowledge while adapting to specific AI image detection tasks. |
|
|
|
### 3. **Multi-Modal and Hybrid Approaches** |
|
* **Combine Image Forensics with Metadata Analysis**: Integrate insights from image processing with metadata (e.g., EXIF, XMP) for a more robust detection framework. |
|
* **Incorporate Knowledge Graphs for AI Model Identification**: If feasible, build or utilize knowledge graphs mapping known AI models to their generation signatures for targeted detection. |
|
|
|
### 4. **Continuous Learning and Update Mechanism** |
|
* **Online Learning or Incremental Training**: Implement a system that can incrementally update the model with new, strategically selected samples, adapting to new AI generation techniques. |
|
* **Community-Driven Updates**: Establish a feedback loop with users/community to report undetected AI images, fueling model updates. |
|
|
|
### 5. **Evaluation and Validation** |
|
* **Robust Validation Protocols**: Regularly test against unseen, diverse datasets including novel AI generations not present during training. |
|
* **Benchmark Against State-of-the-Art**: Periodically compare performance with newly published detection models or techniques. |
|
|
|
|
|
""" |
|
|
|
def preprocess_resize_256(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((256, 256))(image) |
|
|
|
def preprocess_resize_224(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((224, 224))(image) |
|
|
|
def postprocess_pipeline(prediction, class_names): |
|
|
|
return {pred['label']: pred['score'] for pred in prediction} |
|
|
|
def postprocess_logits(outputs, class_names): |
|
|
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
|
|
|
|
|
|
|
|
|
|
def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path): |
|
entry = ModelEntry(model, preprocess, postprocess, class_names) |
|
entry.display_name = display_name |
|
entry.contributor = contributor |
|
entry.model_path = model_path |
|
MODEL_REGISTRY[model_id] = entry |
|
|
|
|
|
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True) |
|
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device) |
|
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) |
|
register_model_with_metadata( |
|
"model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"], |
|
display_name="SwinV2 Based", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"] |
|
) |
|
|
|
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device) |
|
register_model_with_metadata( |
|
"model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"], |
|
display_name="ViT Based", contributor="Heem2", model_path=MODEL_PATHS["model_2"] |
|
) |
|
|
|
|
|
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device) |
|
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device) |
|
def preprocess_256(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((256, 256))(image) |
|
def postprocess_logits_model3(outputs, class_names): |
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
def model3_infer(image): |
|
inputs = feature_extractor_3(image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model_3(**inputs) |
|
return outputs |
|
register_model_with_metadata( |
|
"model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"], |
|
display_name="SDXL Dataset", contributor="Organika", model_path=MODEL_PATHS["model_3"] |
|
) |
|
|
|
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device) |
|
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device) |
|
def model4_infer(image): |
|
inputs = feature_extractor_4(image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model_4(**inputs) |
|
return outputs |
|
def postprocess_logits_model4(outputs, class_names): |
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
register_model_with_metadata( |
|
"model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"], |
|
display_name="SDXL + FLUX", contributor="cmckinle", model_path=MODEL_PATHS["model_4"] |
|
) |
|
|
|
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device) |
|
register_model_with_metadata( |
|
"model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"], |
|
display_name="Vit Based", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"] |
|
) |
|
|
|
clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device) |
|
register_model_with_metadata( |
|
"model_5b", clf_5b, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5b"], |
|
display_name="Vit Based, Newer Dataset", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5b"] |
|
) |
|
|
|
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True) |
|
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device) |
|
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device) |
|
register_model_with_metadata( |
|
"model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"], |
|
display_name="Swin, Midj + SDXL", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"] |
|
) |
|
|
|
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True) |
|
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device) |
|
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device) |
|
register_model_with_metadata( |
|
"model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"], |
|
display_name="ViT", contributor="temp", model_path=MODEL_PATHS["model_7"] |
|
) |
|
|
|
|
|
|
|
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict: |
|
entry = MODEL_REGISTRY[model_id] |
|
img = entry.preprocess(image) |
|
try: |
|
result = entry.model(img) |
|
scores = entry.postprocess(result, entry.class_names) |
|
|
|
ai_score = scores.get(entry.class_names[0], 0.0) |
|
real_score = scores.get(entry.class_names[1], 0.0) |
|
label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN") |
|
return { |
|
"Model": entry.display_name, |
|
"Contributor": entry.contributor, |
|
"HF Model Path": entry.model_path, |
|
"AI Score": ai_score, |
|
"Real Score": real_score, |
|
"Label": label |
|
} |
|
except Exception as e: |
|
return { |
|
"Model": entry.display_name, |
|
"Contributor": entry.contributor, |
|
"HF Model Path": entry.model_path, |
|
"AI Score": None, |
|
"Real Score": None, |
|
"Label": f"Error: {str(e)}" |
|
} |
|
|
|
|
|
|
|
def predict_image(img, confidence_threshold): |
|
model_ids = [ |
|
"model_1", "model_2", "model_3", "model_4", "model_5", "model_5b", "model_6", "model_7" |
|
] |
|
results = [infer(img, model_id, confidence_threshold) for model_id in model_ids] |
|
return img, results |
|
|
|
def get_consensus_label(results): |
|
labels = [r[4] for r in results if len(r) > 4] |
|
if not labels: |
|
return "No results" |
|
consensus = max(set(labels), key=labels.count) |
|
color = {"AI": "red", "REAL": "green", "UNCERTAIN": "orange"}.get(consensus, "gray") |
|
return f"<b><span style='color:{color}'>{consensus}</span></b>" |
|
|
|
|
|
|
|
class ModelWeightManager: |
|
def __init__(self): |
|
self.base_weights = { |
|
"model_1": 0.15, |
|
"model_2": 0.15, |
|
"model_3": 0.15, |
|
"model_4": 0.15, |
|
"model_5": 0.15, |
|
"model_5b": 0.10, |
|
"model_6": 0.10, |
|
"model_7": 0.05 |
|
} |
|
self.situation_weights = { |
|
"high_confidence": 1.2, |
|
"low_confidence": 0.8, |
|
"conflict": 0.5, |
|
"consensus": 1.5 |
|
} |
|
|
|
def adjust_weights(self, predictions, confidence_scores): |
|
"""Dynamically adjust weights based on prediction patterns""" |
|
adjusted_weights = self.base_weights.copy() |
|
|
|
|
|
if self._has_consensus(predictions): |
|
for model in adjusted_weights: |
|
adjusted_weights[model] *= self.situation_weights["consensus"] |
|
|
|
|
|
if self._has_conflicts(predictions): |
|
for model in adjusted_weights: |
|
adjusted_weights[model] *= self.situation_weights["conflict"] |
|
|
|
|
|
for model, confidence in confidence_scores.items(): |
|
if confidence > 0.8: |
|
adjusted_weights[model] *= self.situation_weights["high_confidence"] |
|
elif confidence < 0.5: |
|
adjusted_weights[model] *= self.situation_weights["low_confidence"] |
|
|
|
return self._normalize_weights(adjusted_weights) |
|
|
|
def _has_consensus(self, predictions): |
|
"""Check if models agree on prediction""" |
|
return len(set(predictions.values())) == 1 |
|
|
|
def _has_conflicts(self, predictions): |
|
"""Check if models have conflicting predictions""" |
|
return len(set(predictions.values())) > 2 |
|
|
|
def _normalize_weights(self, weights): |
|
"""Normalize weights to sum to 1""" |
|
total = sum(weights.values()) |
|
return {k: v/total for k, v in weights.items()} |
|
|
|
class EnsembleMonitorAgent: |
|
def __init__(self): |
|
self.performance_metrics = { |
|
"model_accuracy": {}, |
|
"response_times": {}, |
|
"confidence_distribution": {}, |
|
"consensus_rate": 0.0 |
|
} |
|
self.alerts = [] |
|
|
|
def monitor_prediction(self, model_id, prediction, confidence, response_time): |
|
"""Monitor individual model performance""" |
|
if model_id not in self.performance_metrics["model_accuracy"]: |
|
self.performance_metrics["model_accuracy"][model_id] = [] |
|
self.performance_metrics["response_times"][model_id] = [] |
|
self.performance_metrics["confidence_distribution"][model_id] = [] |
|
|
|
self.performance_metrics["response_times"][model_id].append(response_time) |
|
self.performance_metrics["confidence_distribution"][model_id].append(confidence) |
|
|
|
|
|
self._check_performance_issues(model_id) |
|
|
|
def _check_performance_issues(self, model_id): |
|
"""Check for any performance anomalies""" |
|
response_times = self.performance_metrics["response_times"][model_id] |
|
if len(response_times) > 10: |
|
avg_time = sum(response_times[-10:]) / 10 |
|
if avg_time > 2.0: |
|
self.alerts.append(f"High latency detected for {model_id}: {avg_time:.2f}s") |
|
|
|
class WeightOptimizationAgent: |
|
def __init__(self, weight_manager): |
|
self.weight_manager = weight_manager |
|
self.performance_history = [] |
|
self.optimization_threshold = 0.1 |
|
|
|
def analyze_performance(self, predictions, actual_results): |
|
"""Analyze model performance and suggest weight adjustments""" |
|
|
|
|
|
self.performance_history.append(predictions) |
|
|
|
if self._should_optimize(): |
|
self._optimize_weights() |
|
|
|
def _should_optimize(self): |
|
"""Determine if weights should be optimized""" |
|
if len(self.performance_history) < 10: |
|
return False |
|
|
|
|
|
|
|
return len(self.performance_history) % 10 == 0 |
|
|
|
def _optimize_weights(self): |
|
"""Optimize model weights based on performance""" |
|
logger.info("Optimizing model weights based on recent performance.") |
|
|
|
|
|
pass |
|
|
|
class SystemHealthAgent: |
|
def __init__(self): |
|
self.health_metrics = { |
|
"memory_usage": [], |
|
"gpu_utilization": [], |
|
"model_load_times": {}, |
|
"error_rates": {} |
|
} |
|
|
|
def monitor_system_health(self): |
|
"""Monitor overall system health""" |
|
self._check_memory_usage() |
|
self._check_gpu_utilization() |
|
|
|
|
|
def _check_memory_usage(self): |
|
"""Monitor memory usage""" |
|
try: |
|
import psutil |
|
memory = psutil.virtual_memory() |
|
self.health_metrics["memory_usage"].append(memory.percent) |
|
|
|
if memory.percent > 90: |
|
logger.warning(f"High memory usage detected: {memory.percent}%") |
|
except ImportError: |
|
logger.warning("psutil not installed. Cannot monitor memory usage.") |
|
|
|
def _check_gpu_utilization(self): |
|
"""Monitor GPU utilization if available""" |
|
if torch.cuda.is_available(): |
|
try: |
|
gpu_util = torch.cuda.memory_allocated() / torch.cuda.max_memory_allocated() |
|
self.health_metrics["gpu_utilization"].append(gpu_util) |
|
|
|
if gpu_util > 0.9: |
|
logger.warning(f"High GPU utilization detected: {gpu_util*100:.2f}%") |
|
except Exception as e: |
|
logger.warning(f"Error monitoring GPU utilization: {e}") |
|
else: |
|
logger.info("CUDA not available. Skipping GPU utilization monitoring.") |
|
|
|
def predict_image_with_json(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength): |
|
|
|
monitor_agent = EnsembleMonitorAgent() |
|
weight_manager = ModelWeightManager() |
|
optimization_agent = WeightOptimizationAgent(weight_manager) |
|
health_agent = SystemHealthAgent() |
|
|
|
|
|
health_agent.monitor_system_health() |
|
|
|
if augment_methods: |
|
img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength) |
|
else: |
|
img_pil = img |
|
img_np_og = np.array(img) |
|
|
|
|
|
model_predictions = {} |
|
confidence_scores = {} |
|
results = [] |
|
|
|
for model_id in MODEL_REGISTRY: |
|
model_start = time.time() |
|
result = infer(img_pil, model_id, confidence_threshold) |
|
model_end = time.time() |
|
|
|
|
|
monitor_agent.monitor_prediction( |
|
model_id, |
|
result["Label"], |
|
max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)), |
|
model_end - model_start |
|
) |
|
|
|
model_predictions[model_id] = result["Label"] |
|
confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)) |
|
results.append(result) |
|
|
|
|
|
adjusted_weights = weight_manager.adjust_weights(model_predictions, confidence_scores) |
|
|
|
|
|
optimization_agent.analyze_performance(model_predictions, None) |
|
|
|
|
|
weighted_predictions = { |
|
"AI": 0.0, |
|
"REAL": 0.0, |
|
"UNCERTAIN": 0.0 |
|
} |
|
|
|
for model_id, prediction in model_predictions.items(): |
|
|
|
if prediction in weighted_predictions: |
|
weighted_predictions[prediction] += adjusted_weights[model_id] |
|
else: |
|
|
|
logger.warning(f"Unexpected prediction label '{prediction}' from model '{model_id}'. Skipping its weight in consensus.") |
|
|
|
final_prediction_label = "UNCERTAIN" |
|
if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]: |
|
final_prediction_label = "AI" |
|
elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]: |
|
final_prediction_label = "REAL" |
|
|
|
|
|
gradient_image = gradient_processing(img_np_og) |
|
minmax_image = minmax_preprocess(img_np_og) |
|
|
|
|
|
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True) |
|
|
|
|
|
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True) |
|
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False) |
|
|
|
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, minmax_image] |
|
|
|
|
|
table_rows = [[ |
|
r.get("Model", ""), |
|
r.get("Contributor", ""), |
|
r.get("AI Score", ""), |
|
r.get("Real Score", ""), |
|
r.get("Label", "") |
|
] for r in results] |
|
|
|
|
|
consensus_html = f"<b><span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></b>" |
|
|
|
return img_pil, forensics_images, table_rows, results, consensus_html |
|
|
|
with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as demo: |
|
with ms.Application() as app: |
|
with antd.ConfigProvider(): |
|
antdx.Welcome( |
|
icon="https://cdn-avatars.huggingface.co/v1/production/uploads/639daf827270667011153fbc/WpeSFhuB81DY-1TjNUmV_.png", |
|
title="Welcome to Project OpenSight", |
|
description="The OpenSight aims to be an open-source SOTA generated image detection model. This HF Space is not only an introduction but a educational playground for the public to evaluate and challenge current open source models. **Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds.** " |
|
) |
|
with gr.Tab("👀 Detection Models Eval / Playground"): |
|
gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **Space will be upgraded shortly;** inference on all 6 models should take about 1.2~ seconds once we're back on CUDA.\n - The **Community Forensics** mother of all detection models is now available for inference, head to the middle tab above this.\n - Lots of exciting things coming up, stay tuned!") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil') |
|
with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"): |
|
augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods") |
|
rotate_slider = gr.Slider(0, 45, value=2, step=1, label="Rotate Degrees", visible=False) |
|
noise_slider = gr.Slider(0, 50, value=4, step=1, label="Noise Level", visible=False) |
|
sharpen_slider = gr.Slider(0, 50, value=11, step=1, label="Sharpen Strength", visible=False) |
|
confidence_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Confidence Threshold") |
|
inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider] |
|
predict_button = gr.Button("Predict") |
|
augment_button = gr.Button("Augment & Predict") |
|
image_output = gr.Image(label="Processed Image", visible=False) |
|
|
|
|
|
with gr.Column(scale=2): |
|
|
|
results_table = gr.Dataframe( |
|
label="Model Predictions", |
|
headers=["Model", "Contributor", "AI Score", "Real Score", "Label"], |
|
datatype=["str", "str", "number", "number", "str"] |
|
) |
|
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery") |
|
with gr.Accordion("Debug Output (Raw JSON)", open=False): |
|
debug_json = gr.JSON(label="Raw Model Results") |
|
consensus_md = gr.Markdown(label="Consensus", value="") |
|
|
|
outputs = [image_output, forensics_gallery, results_table, debug_json, consensus_md] |
|
|
|
|
|
augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider]) |
|
augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider]) |
|
augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider]) |
|
|
|
predict_button.click( |
|
fn=predict_image_with_json, |
|
inputs=inputs, |
|
outputs=outputs |
|
) |
|
augment_button.click( |
|
fn=predict_image_with_json, |
|
inputs=[ |
|
image_input, |
|
confidence_slider, |
|
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False), |
|
rotate_slider, |
|
noise_slider, |
|
sharpen_slider |
|
], |
|
outputs=outputs |
|
) |
|
with gr.Tab("🙈 Project Introduction"): |
|
gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™") |
|
|
|
with gr.Tab("👑 Community Forensics Preview"): |
|
temp_space = gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces") |
|
|
|
with gr.Tab("🥇 Leaderboard"): |
|
gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™") |
|
|
|
with gr.Tab("Wavelet Blocking Noise Estimation"): |
|
gr.Interface( |
|
fn=wavelet_blocking_noise_estimation, |
|
inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")], |
|
outputs=gr.Image(type="pil"), |
|
title="Wavelet-Based Noise Analysis", |
|
description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering." |
|
) |
|
|
|
|
|
with gr.Tab("Bit Plane Values"): |
|
gr.Interface( |
|
fn=bit_plane_extractor, |
|
inputs=[ |
|
gr.Image(type="pil"), |
|
gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"), |
|
gr.Slider(0, 7, value=0, step=1, label="Bit Plane"), |
|
gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled") |
|
], |
|
outputs=gr.Image(type="pil"), |
|
title="Bit Plane Analysis", |
|
description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(mcp_server=True) |