File size: 32,673 Bytes
932e7b4 19d34ca 932e7b4 c6683ee 16601a0 9fe5b90 c6683ee ac9c2b2 932e7b4 aa96f77 932e7b4 c9d5b11 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 82e63cc 932e7b4 19d34ca 932e7b4 19d34ca 932e7b4 19d34ca 932e7b4 88d2155 19d34ca 932e7b4 e2101d4 932e7b4 88d2155 932e7b4 88d2155 932e7b4 ac9c2b2 88d2155 ac9c2b2 932e7b4 aa96f77 82e63cc 932e7b4 82e63cc 932e7b4 c9d5b11 932e7b4 c9d5b11 9fe5b90 c9d5b11 9fe5b90 c9d5b11 9fe5b90 c9d5b11 9fe5b90 932e7b4 0af824e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
import os
import time
from typing import Literal
import spaces
import gradio as gr
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import numpy as np
import io
import logging
from utils.utils import softmax, augment_image, convert_pil_to_bytes
from utils.gradient import gradient_processing
from utils.minmax import preprocess as minmax_preprocess
from utils.ela import genELA as ELA
from utils.wavelet import wavelet_blocking_noise_estimation
from utils.bitplane import bit_plane_extractor
# from utils.exif import exif_full_dump / currently not working
from forensics.registry import register_model, MODEL_REGISTRY, ModelEntry
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
header_style = {
"textAlign": 'center',
"color": '#fff',
"height": 64,
"paddingInline": 48,
"lineHeight": '64px',
"backgroundColor": '#4096ff',
}
content_style = {
"textAlign": 'center',
"minHeight": 120,
"lineHeight": '120px',
"color": '#fff',
"backgroundColor": '#0958d9',
}
sider_style = {
"textAlign": 'center',
"lineHeight": '120px',
"color": '#fff',
"backgroundColor": '#1677ff',
}
footer_style = {
"textAlign": 'center',
"color": '#fff',
"backgroundColor": '#4096ff',
}
layout_style = {
"borderRadius": 8,
"overflow": 'hidden',
"width": 'calc(100% - 8px)',
"maxWidth": 'calc(100% - 8px)',
}
# Model paths and class names
MODEL_PATHS = {
"model_1": "haywoodsloan/ai-image-detector-deploy",
"model_2": "Heem2/AI-vs-Real-Image-Detection",
"model_3": "Organika/sdxl-detector",
"model_4": "cmckinle/sdxl-flux-detector_v1.1",
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
"model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22",
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL",
"model_7": "date3k2/vit-real-fake-classification-v4"
}
CLASS_NAMES = {
"model_1": ['artificial', 'real'],
"model_2": ['AI Image', 'Real Image'],
"model_3": ['AI', 'Real'],
"model_4": ['AI', 'Real'],
"model_5": ['Realism', 'Deepfake'],
"model_5b": ['Real', 'Deepfake'],
"model_6": ['ai_gen', 'human'],
"model_7": ['Fake', 'Real'],
}
QUICK_INTRO = """
### AI-Generated Content Detection: The Tipping Point
Remember that high-stakes game of whack-a-mole between deepfakes and detection algorithms that the world leaders promised to fund and fight? Well, to no surprise, that battle ended with what seems like a quiet acceptance of defeat. Despite massive increases in 2024 for research and funding for detection systems, it came to no surprise to anyone when the largest public detection project to date was effectively rendered useless just weeks after release.
Then came the sucker-punches. Month after month, SOTA models started dropping like they were on a release calendar:
• Hyper-realistic voice clones reading your emotional tells
• Zero-shot everything making reality checks irrelevant
• Image models that upgraded "plausible" to "indistinguishable" overnight
It was terrifying. Exhilarating. Hands-down the most fascinating existential rollercoaster since crypto crashed. And we all know why detection lost: **Defense always lags offense.** Pouring billions into bigger, slower models was like building thicker castle walls while the enemy developed drone strikes.
The research exodus wasn't betrayal – it was sanity. Why battle an unwinnable arms race when there's actual progress to be made elsewhere? And let's be honest: we saw this coming. When has humanity ever resisted accelerating technology that promises... *interesting* applications? As the ancients wisely tweeted: 🔞 drives innovation.
So what now? We pivot.
✅ Stop pretending we'll ever "solve" deepfakes. Accept they'll keep evolving.
✅ Learn from cybersecurity: Shift from impossible prevention to damage control
✅ Embrace and strive for radical efficiency – 10X the output at 0.1X the resource burn
But here's the silver lining, the hard-won wisdom, and the next chapter: efficiency. It's time to shift our focus from perpetual catch-up to smarter integration and acceptance.
Because our current approach? Training mammoth models on volcanic-scale energy consumption to chase diminishing returns? That's the real deepfake we should be fighting.
Next section: Practical, absurdly efficient alternatives already showing promise. It's not SOTA, but it just makes sense. ⚡
"""
IMPLEMENTATION = """
### 1. **Shift away from the belief that more data leads to better results. Rather, focus on insight-driven and "quality over quantity" datasets in training.**
* **Move Away from Terabyte-Scale Datasets**: Focus on **quality over quantity** by curating a smaller, highly diverse, and **labeled dataset** emphasizing edge cases and the latest AI generations.
* **Active Learning**: Implement active learning techniques to iteratively select the most informative samples for human labeling, reducing dataset size while maintaining effectiveness.
### 2. **Efficient Model Architectures**
* **Adopt Lightweight, State-of-the-Art Models**: Explore models designed for efficiency like MobileNet, EfficientNet, or recent advancements in vision transformers (ViTs) tailored for forensic analysis.
* **Transfer Learning with Fine-Tuning**: Leverage pre-trained models fine-tuned on your curated dataset to leverage general knowledge while adapting to specific AI image detection tasks.
### 3. **Multi-Modal and Hybrid Approaches**
* **Combine Image Forensics with Metadata Analysis**: Integrate insights from image processing with metadata (e.g., EXIF, XMP) for a more robust detection framework.
* **Incorporate Knowledge Graphs for AI Model Identification**: If feasible, build or utilize knowledge graphs mapping known AI models to their generation signatures for targeted detection.
### 4. **Continuous Learning and Update Mechanism**
* **Online Learning or Incremental Training**: Implement a system that can incrementally update the model with new, strategically selected samples, adapting to new AI generation techniques.
* **Community-Driven Updates**: Establish a feedback loop with users/community to report undetected AI images, fueling model updates.
### 5. **Evaluation and Validation**
* **Robust Validation Protocols**: Regularly test against unseen, diverse datasets including novel AI generations not present during training.
* **Benchmark Against State-of-the-Art**: Periodically compare performance with newly published detection models or techniques.
"""
def preprocess_resize_256(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((256, 256))(image)
def preprocess_resize_224(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((224, 224))(image)
def postprocess_pipeline(prediction, class_names):
# Assumes HuggingFace pipeline output
return {pred['label']: pred['score'] for pred in prediction}
def postprocess_logits(outputs, class_names):
# Assumes model output with logits
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
# Expand ModelEntry to include metadata
# (Assume ModelEntry is updated in registry.py to accept display_name, contributor, model_path)
# If not, we will update registry.py accordingly after this.
def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path):
entry = ModelEntry(model, preprocess, postprocess, class_names)
entry.display_name = display_name
entry.contributor = contributor
entry.model_path = model_path
MODEL_REGISTRY[model_id] = entry
# Load and register models (example for two models)
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
register_model_with_metadata(
"model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"],
display_name="SwinV2 Based", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"]
)
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)
register_model_with_metadata(
"model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"],
display_name="ViT Based", contributor="Heem2", model_path=MODEL_PATHS["model_2"]
)
# Register remaining models
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
def preprocess_256(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((256, 256))(image)
def postprocess_logits_model3(outputs, class_names):
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
def model3_infer(image):
inputs = feature_extractor_3(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model_3(**inputs)
return outputs
register_model_with_metadata(
"model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"],
display_name="SDXL Dataset", contributor="Organika", model_path=MODEL_PATHS["model_3"]
)
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)
def model4_infer(image):
inputs = feature_extractor_4(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model_4(**inputs)
return outputs
def postprocess_logits_model4(outputs, class_names):
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
register_model_with_metadata(
"model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"],
display_name="SDXL + FLUX", contributor="cmckinle", model_path=MODEL_PATHS["model_4"]
)
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
register_model_with_metadata(
"model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"],
display_name="Vit Based", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"]
)
clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device)
register_model_with_metadata(
"model_5b", clf_5b, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5b"],
display_name="Vit Based, Newer Dataset", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5b"]
)
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True)
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device)
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device)
register_model_with_metadata(
"model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"],
display_name="Swin, Midj + SDXL", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"]
)
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True)
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device)
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device)
register_model_with_metadata(
"model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"],
display_name="ViT", contributor="temp", model_path=MODEL_PATHS["model_7"]
)
# Generic inference function
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict:
entry = MODEL_REGISTRY[model_id]
img = entry.preprocess(image)
try:
result = entry.model(img)
scores = entry.postprocess(result, entry.class_names)
# Flatten output for Dataframe: include metadata and both class scores
ai_score = scores.get(entry.class_names[0], 0.0)
real_score = scores.get(entry.class_names[1], 0.0)
label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN")
return {
"Model": entry.display_name,
"Contributor": entry.contributor,
"HF Model Path": entry.model_path,
"AI Score": ai_score,
"Real Score": real_score,
"Label": label
}
except Exception as e:
return {
"Model": entry.display_name,
"Contributor": entry.contributor,
"HF Model Path": entry.model_path,
"AI Score": None,
"Real Score": None,
"Label": f"Error: {str(e)}"
}
# Update predict_image to use all registered models in order
def predict_image(img, confidence_threshold):
model_ids = [
"model_1", "model_2", "model_3", "model_4", "model_5", "model_5b", "model_6", "model_7"
]
results = [infer(img, model_id, confidence_threshold) for model_id in model_ids]
return img, results
def get_consensus_label(results):
labels = [r[4] for r in results if len(r) > 4]
if not labels:
return "No results"
consensus = max(set(labels), key=labels.count)
color = {"AI": "red", "REAL": "green", "UNCERTAIN": "orange"}.get(consensus, "gray")
return f"<b><span style='color:{color}'>{consensus}</span></b>"
# Update predict_image_with_json to return consensus label
class ModelWeightManager:
def __init__(self):
self.base_weights = {
"model_1": 0.15, # SwinV2 Based
"model_2": 0.15, # ViT Based
"model_3": 0.15, # SDXL Dataset
"model_4": 0.15, # SDXL + FLUX
"model_5": 0.15, # ViT Based
"model_5b": 0.10, # ViT Based, Newer Dataset
"model_6": 0.10, # Swin, Midj + SDXL
"model_7": 0.05 # ViT
}
self.situation_weights = {
"high_confidence": 1.2, # Boost weights for high confidence predictions
"low_confidence": 0.8, # Reduce weights for low confidence
"conflict": 0.5, # Reduce weights when models disagree
"consensus": 1.5 # Boost weights when models agree
}
def adjust_weights(self, predictions, confidence_scores):
"""Dynamically adjust weights based on prediction patterns"""
adjusted_weights = self.base_weights.copy()
# Check for consensus
if self._has_consensus(predictions):
for model in adjusted_weights:
adjusted_weights[model] *= self.situation_weights["consensus"]
# Check for conflicts
if self._has_conflicts(predictions):
for model in adjusted_weights:
adjusted_weights[model] *= self.situation_weights["conflict"]
# Adjust based on confidence
for model, confidence in confidence_scores.items():
if confidence > 0.8:
adjusted_weights[model] *= self.situation_weights["high_confidence"]
elif confidence < 0.5:
adjusted_weights[model] *= self.situation_weights["low_confidence"]
return self._normalize_weights(adjusted_weights)
def _has_consensus(self, predictions):
"""Check if models agree on prediction"""
return len(set(predictions.values())) == 1
def _has_conflicts(self, predictions):
"""Check if models have conflicting predictions"""
return len(set(predictions.values())) > 2
def _normalize_weights(self, weights):
"""Normalize weights to sum to 1"""
total = sum(weights.values())
return {k: v/total for k, v in weights.items()}
class EnsembleMonitorAgent:
def __init__(self):
self.performance_metrics = {
"model_accuracy": {},
"response_times": {},
"confidence_distribution": {},
"consensus_rate": 0.0
}
self.alerts = []
def monitor_prediction(self, model_id, prediction, confidence, response_time):
"""Monitor individual model performance"""
if model_id not in self.performance_metrics["model_accuracy"]:
self.performance_metrics["model_accuracy"][model_id] = []
self.performance_metrics["response_times"][model_id] = []
self.performance_metrics["confidence_distribution"][model_id] = []
self.performance_metrics["response_times"][model_id].append(response_time)
self.performance_metrics["confidence_distribution"][model_id].append(confidence)
# Check for performance issues
self._check_performance_issues(model_id)
def _check_performance_issues(self, model_id):
"""Check for any performance anomalies"""
response_times = self.performance_metrics["response_times"][model_id]
if len(response_times) > 10:
avg_time = sum(response_times[-10:]) / 10
if avg_time > 2.0: # More than 2 seconds
self.alerts.append(f"High latency detected for {model_id}: {avg_time:.2f}s")
class WeightOptimizationAgent:
def __init__(self, weight_manager):
self.weight_manager = weight_manager
self.performance_history = []
self.optimization_threshold = 0.1 # 10% performance change triggers optimization
def analyze_performance(self, predictions, actual_results):
"""Analyze model performance and suggest weight adjustments"""
# Placeholder for actual_results. In a real scenario, this would come from a validation set.
# For now, we'll just track predictions.
self.performance_history.append(predictions)
if self._should_optimize():
self._optimize_weights()
def _should_optimize(self):
"""Determine if weights should be optimized"""
if len(self.performance_history) < 10:
return False
# Placeholder for actual performance calculation
# For demonstration, let's say we optimize every 10 runs
return len(self.performance_history) % 10 == 0
def _optimize_weights(self):
"""Optimize model weights based on performance"""
logger.info("Optimizing model weights based on recent performance.")
# This is where more sophisticated optimization logic would go.
# For example, you could slightly adjust weights of models that consistently predict correctly.
pass
class SystemHealthAgent:
def __init__(self):
self.health_metrics = {
"memory_usage": [],
"gpu_utilization": [],
"model_load_times": {},
"error_rates": {}
}
def monitor_system_health(self):
"""Monitor overall system health"""
self._check_memory_usage()
self._check_gpu_utilization()
# You might add _check_model_health() here later
def _check_memory_usage(self):
"""Monitor memory usage"""
try:
import psutil
memory = psutil.virtual_memory()
self.health_metrics["memory_usage"].append(memory.percent)
if memory.percent > 90:
logger.warning(f"High memory usage detected: {memory.percent}%")
except ImportError:
logger.warning("psutil not installed. Cannot monitor memory usage.")
def _check_gpu_utilization(self):
"""Monitor GPU utilization if available"""
if torch.cuda.is_available():
try:
gpu_util = torch.cuda.memory_allocated() / torch.cuda.max_memory_allocated()
self.health_metrics["gpu_utilization"].append(gpu_util)
if gpu_util > 0.9:
logger.warning(f"High GPU utilization detected: {gpu_util*100:.2f}%")
except Exception as e:
logger.warning(f"Error monitoring GPU utilization: {e}")
else:
logger.info("CUDA not available. Skipping GPU utilization monitoring.")
def predict_image_with_json(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
# Initialize agents
monitor_agent = EnsembleMonitorAgent()
weight_manager = ModelWeightManager()
optimization_agent = WeightOptimizationAgent(weight_manager)
health_agent = SystemHealthAgent()
# Monitor system health
health_agent.monitor_system_health()
if augment_methods:
img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength)
else:
img_pil = img
img_np_og = np.array(img) # Convert PIL Image to NumPy array
# Get predictions with timing
model_predictions = {}
confidence_scores = {}
results = [] # To store the results for the DataFrame
for model_id in MODEL_REGISTRY:
model_start = time.time()
result = infer(img_pil, model_id, confidence_threshold)
model_end = time.time()
# Monitor individual model performance
monitor_agent.monitor_prediction(
model_id,
result["Label"],
max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)),
model_end - model_start
)
model_predictions[model_id] = result["Label"]
confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0))
results.append(result) # Add individual model result to the list
# Get adjusted weights
adjusted_weights = weight_manager.adjust_weights(model_predictions, confidence_scores)
# Optimize weights if needed
optimization_agent.analyze_performance(model_predictions, None) # Placeholder for actual results
# Calculate weighted consensus
weighted_predictions = {
"AI": 0.0,
"REAL": 0.0,
"UNCERTAIN": 0.0
}
for model_id, prediction in model_predictions.items():
# Ensure the prediction label is valid for weighted_predictions
if prediction in weighted_predictions:
weighted_predictions[prediction] += adjusted_weights[model_id]
else:
# Handle cases where prediction might be an error or unexpected label
logger.warning(f"Unexpected prediction label '{prediction}' from model '{model_id}'. Skipping its weight in consensus.")
final_prediction_label = "UNCERTAIN"
if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]:
final_prediction_label = "AI"
elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]:
final_prediction_label = "REAL"
# Rest of your existing code remains the same after this point
gradient_image = gradient_processing(img_np_og) # Added gradient processing
minmax_image = minmax_preprocess(img_np_og) # Added MinMax processing
# First pass - standard analysis
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
# Second pass - enhanced visibility
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, minmax_image]
# Prepare table rows for Dataframe (exclude model path)
table_rows = [[
r.get("Model", ""),
r.get("Contributor", ""),
r.get("AI Score", ""),
r.get("Real Score", ""),
r.get("Label", "")
] for r in results]
# The get_consensus_label function is now replaced by final_prediction_label from weighted consensus
consensus_html = f"<b><span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></b>"
return img_pil, forensics_images, table_rows, results, consensus_html
with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as demo:
with ms.Application() as app:
with antd.ConfigProvider():
antdx.Welcome(
icon="https://cdn-avatars.huggingface.co/v1/production/uploads/639daf827270667011153fbc/WpeSFhuB81DY-1TjNUmV_.png",
title="Welcome to Project OpenSight",
description="The OpenSight aims to be an open-source SOTA generated image detection model. This HF Space is not only an introduction but a educational playground for the public to evaluate and challenge current open source models. **Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds.** "
)
with gr.Tab("👀 Detection Models Eval / Playground"):
gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **Space will be upgraded shortly;** inference on all 6 models should take about 1.2~ seconds once we're back on CUDA.\n - The **Community Forensics** mother of all detection models is now available for inference, head to the middle tab above this.\n - Lots of exciting things coming up, stay tuned!")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil')
with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"):
augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods")
rotate_slider = gr.Slider(0, 45, value=2, step=1, label="Rotate Degrees", visible=False)
noise_slider = gr.Slider(0, 50, value=4, step=1, label="Noise Level", visible=False)
sharpen_slider = gr.Slider(0, 50, value=11, step=1, label="Sharpen Strength", visible=False)
confidence_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Confidence Threshold")
inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider]
predict_button = gr.Button("Predict")
augment_button = gr.Button("Augment & Predict")
image_output = gr.Image(label="Processed Image", visible=False)
with gr.Column(scale=2):
# Use Gradio-native Dataframe to display results with headers
results_table = gr.Dataframe(
label="Model Predictions",
headers=["Model", "Contributor", "AI Score", "Real Score", "Label"],
datatype=["str", "str", "number", "number", "str"]
)
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery")
with gr.Accordion("Debug Output (Raw JSON)", open=False):
debug_json = gr.JSON(label="Raw Model Results")
consensus_md = gr.Markdown(label="Consensus", value="")
outputs = [image_output, forensics_gallery, results_table, debug_json, consensus_md]
# Show/hide rotate slider based on selected augmentation method
augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])
augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider])
augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider])
predict_button.click(
fn=predict_image_with_json,
inputs=inputs,
outputs=outputs
)
augment_button.click( # Connect Augment button to the function
fn=predict_image_with_json,
inputs=[
image_input,
confidence_slider,
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False), # Default values
rotate_slider,
noise_slider,
sharpen_slider
],
outputs=outputs
)
with gr.Tab("🙈 Project Introduction"):
gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™")
with gr.Tab("👑 Community Forensics Preview"):
temp_space = gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces")
# preview # no idea if this will work
with gr.Tab("🥇 Leaderboard"):
gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™")
with gr.Tab("Wavelet Blocking Noise Estimation"):
gr.Interface(
fn=wavelet_blocking_noise_estimation,
inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")],
outputs=gr.Image(type="pil"),
title="Wavelet-Based Noise Analysis",
description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering."
)
with gr.Tab("Bit Plane Values"):
gr.Interface(
fn=bit_plane_extractor,
inputs=[
gr.Image(type="pil"),
gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"),
gr.Slider(0, 7, value=0, step=1, label="Bit Plane"),
gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled")
],
outputs=gr.Image(type="pil"),
title="Bit Plane Analysis",
description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing."
)
# with gr.Tab("EXIF Full Dump"):
# gr.Interface(
# fn=exif_full_dump,
# inputs=gr.Image(type="pil"),
# outputs=gr.JSON(),
# description="Extract all EXIF metadata from the uploaded image."
# )
# --- MCP-Ready Launch ---
if __name__ == "__main__":
demo.launch(mcp_server=True) |