GitBot / app.py
acecalisto3's picture
Update app.py
58b349f verified
raw
history blame
6.22 kB
import gradio as gr
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from sentence_transformers import SentenceTransformer, util
import os
import requests
import json
# --- Constants ---
GITHUB_API_BASE_URL = "https://api.github.com/repos"
DEFAULT_MODEL = "microsoft/CodeBERT-base" # Default model for issue resolution
MAX_RELATED_ISSUES = 3 # Maximum number of related issues to display
SYSTEM_MESSAGE = "You are GitBot, the Github project guardian angel. You resolve issues and propose implementation of feature requests."
# --- Model Setup ---
model_name = "enricoros/big-agi" # Choose your preferred model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
similarity_model = SentenceTransformer('all-mpnet-base-v2') # For issue similarity
# --- Functions ---
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None) -> dict:
"""Analyzes an issue description and extracts severity and programming language."""
model = pipeline("text-generation", model=model_name)
response = model(
f"{SYSTEM_MESSAGE}\n{issue_text}\nAssistant: ",
max_length=2048, # Adjust as needed
do_sample=True,
temperature=0.7, # Adjust as needed
top_k=50, # Adjust as needed
)
assistant_response = response[0]['generated_text'].strip()
# Extract information from the response
if "Severity" in assistant_response:
severity = assistant_response.split(":")[1].strip()
if "Programming Language" in assistant_response:
programming_language = assistant_response.split(":")[1].strip()
return {
'assistant_response': assistant_response,
'severity': severity,
'programming_language': programming_language,
}
def find_related_issues(issue_text: str, issues: list) -> list:
"""Finds related issues based on text similarity."""
issue_embedding = similarity_model.encode(issue_text)
similarities = [util.cos_sim(issue_embedding, similarity_model.encode(issue['title'])) for issue in issues]
sorted_issues = sorted(enumerate(similarities), key=lambda x: x[1], reverse=True)
return [issues[i] for i, similarity in sorted_issues[:MAX_RELATED_ISSUES]]
def fetch_github_issues(github_api_token: str, github_username: str, github_repository: str) -> list:
"""Fetches issues from the GitHub API."""
headers = {'Authorization': f'token {github_api_token}'}
url = f"{GITHUB_API_BASE_URL}/{github_username}/{github_repository}/issues"
response = requests.get(url, headers=headers)
if response.status_code == 200:
return response.json()
else:
return []
def respond(
command: str,
history: str,
github_api_token: str,
github_username: str,
github_repository: str,
selected_model: str,
severity: str,
programming_language: str,
max_tokens: int,
temperature: float,
top_p: float,
*args,
**kwargs,
) -> dict:
"""Generates a response based on the command, history, and other parameters."""
model = pipeline("text-generation", model=selected_model)
# Fetch issues if the command is /github
if command == "/github":
issues = fetch_github_issues(github_api_token, github_username, github_repository)
if issues:
related_issues = find_related_issues(history, issues)
related_issues_text = "\n".join(
f"## Related Issue {i+1}: {issue['title']}\n{issue['body']}" for i, issue in enumerate(related_issues)
)
history += f"\n{related_issues_text}"
# Generate a response from the LLM
response = model(
f"{SYSTEM_MESSAGE}\n{command}\n{history}\n{github_username}/{github_repository}\n{severity}\n{programming_language}\nAssistant: ",
max_length=max_tokens,
do_sample=True,
temperature=temperature,
top_k=top_p,
)
assistant_response = response[0]['generated_text'].strip()
# Analyze the response for severity and programming language
analyzed_data = analyze_issues(assistant_response, selected_model, severity, programming_language)
return {
'assistant_response': assistant_response,
'severity': analyzed_data['severity'],
'programming_language': analyzed_data['programming_language'],
}
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("## GitBot: Your GitHub Assistant")
with gr.Row():
github_api_token = gr.Textbox(label="GitHub API Token", type="password")
github_username = gr.Textbox(label="GitHub Username")
github_repository = gr.Textbox(label="GitHub Repository")
with gr.Row():
model_dropdown = gr.Dropdown(
choices=["microsoft/CodeBERT-base", "Salesforce/codegen-350M-mono", "enricoros/big-agi"], # Add more models
label="Select Model for Issue Resolution",
value=DEFAULT_MODEL,
)
with gr.Row():
severity_dropdown = gr.Dropdown(
choices=["Critical", "Major", "Minor", "Trivial"],
label="Severity",
value=None,
)
programming_language_textbox = gr.Textbox(label="Programming Language")
with gr.Row():
command_dropdown = gr.Dropdown(
choices=[
"/github",
"/help",
"/generate_code",
"/explain_concept",
"/write_documentation",
"/translate_code",
],
label="Select Command",
)
chatbot = gr.Chatbot(
respond,
additional_inputs=[
github_api_token,
github_username,
github_repository,
model_dropdown,
severity_dropdown,
programming_language_textbox,
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)"),
],
)
demo.launch(share=True)