Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,41 +3,37 @@ from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
import os
|
5 |
import requests
|
|
|
6 |
|
7 |
-
# Constants
|
8 |
GITHUB_API_BASE_URL = "https://api.github.com/repos"
|
9 |
-
DEFAULT_MODEL = "microsoft/CodeBERT-base"
|
10 |
-
MAX_RELATED_ISSUES = 3
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
# Define models for issue analysis
|
16 |
-
model_name = "enricoros/big-agi"
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
|
|
|
|
19 |
|
20 |
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None) -> dict:
|
21 |
-
|
22 |
model = pipeline("text-generation", model=model_name)
|
23 |
-
|
24 |
-
# Generate a response
|
25 |
response = model(
|
26 |
-
f"{issue_text}\nAssistant: ",
|
27 |
-
max_length=
|
28 |
do_sample=True,
|
29 |
-
temperature=0.7,
|
30 |
-
top_k=50,
|
31 |
-
top_p=0.9,
|
32 |
)
|
33 |
-
|
34 |
-
# Extract the assistant's response
|
35 |
assistant_response = response[0]['generated_text'].strip()
|
36 |
|
37 |
-
#
|
38 |
if "Severity" in assistant_response:
|
39 |
severity = assistant_response.split(":")[1].strip()
|
40 |
-
|
41 |
if "Programming Language" in assistant_response:
|
42 |
programming_language = assistant_response.split(":")[1].strip()
|
43 |
|
@@ -48,109 +44,120 @@ def analyze_issues(issue_text: str, model_name: str, severity: str = None, progr
|
|
48 |
}
|
49 |
|
50 |
def find_related_issues(issue_text: str, issues: list) -> list:
|
51 |
-
|
52 |
issue_embedding = similarity_model.encode(issue_text)
|
53 |
similarities = [util.cos_sim(issue_embedding, similarity_model.encode(issue['title'])) for issue in issues]
|
54 |
-
|
55 |
-
# Sort the issues by similarity
|
56 |
sorted_issues = sorted(enumerate(similarities), key=lambda x: x[1], reverse=True)
|
57 |
-
|
58 |
-
# Select the top related issues
|
59 |
-
related_issues = [issues[i] for i, similarity in sorted_issues[:MAX_RELATED_ISSUES]]
|
60 |
-
|
61 |
-
return related_issues
|
62 |
|
63 |
def fetch_github_issues(github_api_token: str, github_username: str, github_repository: str) -> list:
|
64 |
-
|
65 |
headers = {'Authorization': f'token {github_api_token}'}
|
66 |
url = f"{GITHUB_API_BASE_URL}/{github_username}/{github_repository}/issues"
|
67 |
response = requests.get(url, headers=headers)
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
return issues
|
73 |
|
74 |
def respond(
|
75 |
-
command
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
) -> dict:
|
79 |
-
|
80 |
-
model = pipeline("text-generation", model=
|
81 |
-
|
82 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
response = model(
|
84 |
-
f"{
|
85 |
max_length=max_tokens,
|
86 |
do_sample=True,
|
87 |
temperature=temperature,
|
88 |
-
top_k=
|
89 |
-
top_p=top_p,
|
90 |
)
|
91 |
-
|
92 |
-
# Extract the assistant's response
|
93 |
assistant_response = response[0]['generated_text'].strip()
|
94 |
|
|
|
|
|
|
|
95 |
return {
|
96 |
'assistant_response': assistant_response,
|
97 |
-
'severity': severity,
|
98 |
-
'programming_language': programming_language,
|
99 |
}
|
100 |
|
|
|
|
|
101 |
with gr.Blocks() as demo:
|
|
|
|
|
102 |
with gr.Row():
|
103 |
github_api_token = gr.Textbox(label="GitHub API Token", type="password")
|
104 |
github_username = gr.Textbox(label="GitHub Username")
|
105 |
github_repository = gr.Textbox(label="GitHub Repository")
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
choices=["microsoft/CodeBERT-base", "Salesforce/codegen-45M-mono"],
|
114 |
-
label="Select Model for Issue Resolution",
|
115 |
-
value=DEFAULT_MODEL,
|
116 |
-
)
|
117 |
-
|
118 |
-
severity_dropdown = gr.Dropdown(
|
119 |
-
choices=["Critical", "Major", "Minor", "Trivial"],
|
120 |
-
label="Severity",
|
121 |
-
value=None,
|
122 |
-
)
|
123 |
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
137 |
|
138 |
chatbot = gr.Chatbot(
|
139 |
respond,
|
140 |
additional_inputs=[
|
141 |
-
command_dropdown,
|
142 |
-
system_message,
|
143 |
-
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"),
|
144 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
145 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)"),
|
146 |
github_api_token,
|
147 |
github_username,
|
148 |
github_repository,
|
149 |
model_dropdown,
|
150 |
severity_dropdown,
|
151 |
programming_language_textbox,
|
|
|
|
|
|
|
152 |
],
|
153 |
)
|
154 |
|
155 |
-
|
156 |
-
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)
|
|
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
import os
|
5 |
import requests
|
6 |
+
import json
|
7 |
|
8 |
+
# --- Constants ---
|
9 |
GITHUB_API_BASE_URL = "https://api.github.com/repos"
|
10 |
+
DEFAULT_MODEL = "microsoft/CodeBERT-base" # Default model for issue resolution
|
11 |
+
MAX_RELATED_ISSUES = 3 # Maximum number of related issues to display
|
12 |
+
SYSTEM_MESSAGE = "You are GitBot, the Github project guardian angel. You resolve issues and propose implementation of feature requests."
|
13 |
|
14 |
+
# --- Model Setup ---
|
15 |
+
model_name = "enricoros/big-agi" # Choose your preferred model
|
|
|
|
|
|
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
18 |
+
similarity_model = SentenceTransformer('all-mpnet-base-v2') # For issue similarity
|
19 |
+
|
20 |
+
# --- Functions ---
|
21 |
|
22 |
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None) -> dict:
|
23 |
+
"""Analyzes an issue description and extracts severity and programming language."""
|
24 |
model = pipeline("text-generation", model=model_name)
|
|
|
|
|
25 |
response = model(
|
26 |
+
f"{SYSTEM_MESSAGE}\n{issue_text}\nAssistant: ",
|
27 |
+
max_length=2048, # Adjust as needed
|
28 |
do_sample=True,
|
29 |
+
temperature=0.7, # Adjust as needed
|
30 |
+
top_k=50, # Adjust as needed
|
|
|
31 |
)
|
|
|
|
|
32 |
assistant_response = response[0]['generated_text'].strip()
|
33 |
|
34 |
+
# Extract information from the response
|
35 |
if "Severity" in assistant_response:
|
36 |
severity = assistant_response.split(":")[1].strip()
|
|
|
37 |
if "Programming Language" in assistant_response:
|
38 |
programming_language = assistant_response.split(":")[1].strip()
|
39 |
|
|
|
44 |
}
|
45 |
|
46 |
def find_related_issues(issue_text: str, issues: list) -> list:
|
47 |
+
"""Finds related issues based on text similarity."""
|
48 |
issue_embedding = similarity_model.encode(issue_text)
|
49 |
similarities = [util.cos_sim(issue_embedding, similarity_model.encode(issue['title'])) for issue in issues]
|
|
|
|
|
50 |
sorted_issues = sorted(enumerate(similarities), key=lambda x: x[1], reverse=True)
|
51 |
+
return [issues[i] for i, similarity in sorted_issues[:MAX_RELATED_ISSUES]]
|
|
|
|
|
|
|
|
|
52 |
|
53 |
def fetch_github_issues(github_api_token: str, github_username: str, github_repository: str) -> list:
|
54 |
+
"""Fetches issues from the GitHub API."""
|
55 |
headers = {'Authorization': f'token {github_api_token}'}
|
56 |
url = f"{GITHUB_API_BASE_URL}/{github_username}/{github_repository}/issues"
|
57 |
response = requests.get(url, headers=headers)
|
58 |
+
if response.status_code == 200:
|
59 |
+
return response.json()
|
60 |
+
else:
|
61 |
+
return []
|
|
|
62 |
|
63 |
def respond(
|
64 |
+
command: str,
|
65 |
+
history: str,
|
66 |
+
github_api_token: str,
|
67 |
+
github_username: str,
|
68 |
+
github_repository: str,
|
69 |
+
selected_model: str,
|
70 |
+
severity: str,
|
71 |
+
programming_language: str,
|
72 |
+
max_tokens: int,
|
73 |
+
temperature: float,
|
74 |
+
top_p: float,
|
75 |
+
*args,
|
76 |
+
**kwargs,
|
77 |
) -> dict:
|
78 |
+
"""Generates a response based on the command, history, and other parameters."""
|
79 |
+
model = pipeline("text-generation", model=selected_model)
|
80 |
+
|
81 |
+
# Fetch issues if the command is /github
|
82 |
+
if command == "/github":
|
83 |
+
issues = fetch_github_issues(github_api_token, github_username, github_repository)
|
84 |
+
if issues:
|
85 |
+
related_issues = find_related_issues(history, issues)
|
86 |
+
related_issues_text = "\n".join(
|
87 |
+
f"## Related Issue {i+1}: {issue['title']}\n{issue['body']}" for i, issue in enumerate(related_issues)
|
88 |
+
)
|
89 |
+
history += f"\n{related_issues_text}"
|
90 |
+
|
91 |
+
# Generate a response from the LLM
|
92 |
response = model(
|
93 |
+
f"{SYSTEM_MESSAGE}\n{command}\n{history}\n{github_username}/{github_repository}\n{severity}\n{programming_language}\nAssistant: ",
|
94 |
max_length=max_tokens,
|
95 |
do_sample=True,
|
96 |
temperature=temperature,
|
97 |
+
top_k=top_p,
|
|
|
98 |
)
|
|
|
|
|
99 |
assistant_response = response[0]['generated_text'].strip()
|
100 |
|
101 |
+
# Analyze the response for severity and programming language
|
102 |
+
analyzed_data = analyze_issues(assistant_response, selected_model, severity, programming_language)
|
103 |
+
|
104 |
return {
|
105 |
'assistant_response': assistant_response,
|
106 |
+
'severity': analyzed_data['severity'],
|
107 |
+
'programming_language': analyzed_data['programming_language'],
|
108 |
}
|
109 |
|
110 |
+
# --- Gradio Interface ---
|
111 |
+
|
112 |
with gr.Blocks() as demo:
|
113 |
+
gr.Markdown("## GitBot: Your GitHub Assistant")
|
114 |
+
|
115 |
with gr.Row():
|
116 |
github_api_token = gr.Textbox(label="GitHub API Token", type="password")
|
117 |
github_username = gr.Textbox(label="GitHub Username")
|
118 |
github_repository = gr.Textbox(label="GitHub Repository")
|
119 |
|
120 |
+
with gr.Row():
|
121 |
+
model_dropdown = gr.Dropdown(
|
122 |
+
choices=["microsoft/CodeBERT-base", "Salesforce/codegen-350M-mono", "enricoros/big-agi"], # Add more models
|
123 |
+
label="Select Model for Issue Resolution",
|
124 |
+
value=DEFAULT_MODEL,
|
125 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
with gr.Row():
|
128 |
+
severity_dropdown = gr.Dropdown(
|
129 |
+
choices=["Critical", "Major", "Minor", "Trivial"],
|
130 |
+
label="Severity",
|
131 |
+
value=None,
|
132 |
+
)
|
133 |
+
programming_language_textbox = gr.Textbox(label="Programming Language")
|
134 |
|
135 |
+
with gr.Row():
|
136 |
+
command_dropdown = gr.Dropdown(
|
137 |
+
choices=[
|
138 |
+
"/github",
|
139 |
+
"/help",
|
140 |
+
"/generate_code",
|
141 |
+
"/explain_concept",
|
142 |
+
"/write_documentation",
|
143 |
+
"/translate_code",
|
144 |
+
],
|
145 |
+
label="Select Command",
|
146 |
+
)
|
147 |
|
148 |
chatbot = gr.Chatbot(
|
149 |
respond,
|
150 |
additional_inputs=[
|
|
|
|
|
|
|
|
|
|
|
151 |
github_api_token,
|
152 |
github_username,
|
153 |
github_repository,
|
154 |
model_dropdown,
|
155 |
severity_dropdown,
|
156 |
programming_language_textbox,
|
157 |
+
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"),
|
158 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
159 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)"),
|
160 |
],
|
161 |
)
|
162 |
|
163 |
+
demo.launch(share=True)
|
|