Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
from sentence_transformers import SentenceTransformer, util | |
# Initialize models and tokenizers | |
model_name = "enricoros/big-agi" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Constants | |
GITHUB_API_BASE_URL = "https://api.github.com/repos" | |
DEFAULT_MODEL = "microsoft/CodeBERT-base" | |
MAX_RELATED_ISSUES = 3 | |
# Load a pre-trained model for sentence similarity | |
similarity_model = SentenceTransformer('all-mpnet-base-v2') | |
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None): | |
# Generate a response using the loaded model | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
response = generator(issue_text, max_length=512, num_return_sequences=1)[0]['generated_text'] | |
return response | |
def find_related_issues(issue_text: str, issues: list): | |
issue_embedding = similarity_model.encode(issue_text) | |
related_issues = [] | |
for issue in issues: | |
title_embedding = similarity_model.encode(issue['title']) | |
similarity = util.cos_sim(issue_embedding, title_embedding)[0][0] | |
related_issues.append((issue, similarity.item())) | |
related_issues.sort(key=lambda x: x[1], reverse=True) | |
return [issue for issue, _ in related_issues[:MAX_RELATED_ISSUES]] | |
def fetch_github_issues(github_api_token: str, github_username: str, github_repository: str): | |
headers = {'Authorization': f'token {github_api_token}'} | |
url = f"{GITHUB_API_BASE_URL}/{github_username}/{github_repository}/issues" | |
response = requests.get(url, headers=headers) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
raise Exception(f"Failed to fetch issues: {response.text}") | |
def respond( | |
command, | |
history, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
github_api_token, | |
github_username, | |
github_repository, | |
selected_model, | |
severity, | |
programming_language, | |
): | |
# Processing the command and generating a response | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
response = generator(f"{system_message}\n{command}\n{history}", max_length=max_tokens, num_return_sequences=1)[0]['generated_text'] | |
return response | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
github_api_token = gr.Textbox(label="GitHub API Token", type="password") | |
github_username = gr.Textbox(label="GitHub Username") | |
github_repository = gr.Textbox(label="GitHub Repository") | |
system_message = gr.Textbox(value="You are GitBot, the Github project guardian angel.", label="System message") | |
model_dropdown = gr.Dropdown(choices=[DEFAULT_MODEL, "enricoros/big-agi"], label="Select Model for Issue Resolution", value=DEFAULT_MODEL) | |
severity_dropdown = gr.Dropdown(choices=["Critical", "Major", "Minor", "Trivial"], label="Severity") | |
programming_language_textbox = gr.Textbox(label="Programming Language") | |
command_dropdown = gr.Dropdown(choices=["/github", "/help", "/generate_code"], label="Select Command") | |
chatbot = gr.Interface( | |
fn=respond, | |
inputs=[ | |
command_dropdown, | |
system_message, | |
gr.Slider(minimum=1, maximum=8192, value=2048, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.71, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p (nucleus sampling)"), | |
github_api_token, | |
github_username, | |
github_repository, | |
model_dropdown, | |
severity_dropdown, | |
programming_language_textbox | |
], | |
outputs="text" | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True, server_name="0.0.0.0", server_port=7860) |