Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
from sentence_transformers import SentenceTransformer, util
|
4 |
-
import os
|
5 |
import requests
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
model_name = "enricoros/big-agi"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
12 |
|
13 |
-
|
14 |
-
# Constants for enhanced organization
|
15 |
GITHUB_API_BASE_URL = "https://api.github.com/repos"
|
16 |
DEFAULT_MODEL = "microsoft/CodeBERT-base"
|
17 |
MAX_RELATED_ISSUES = 3
|
@@ -19,58 +16,32 @@ MAX_RELATED_ISSUES = 3
|
|
19 |
# Load a pre-trained model for sentence similarity
|
20 |
similarity_model = SentenceTransformer('all-mpnet-base-v2')
|
21 |
|
22 |
-
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None)
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
# Generate a response
|
27 |
-
response = model(
|
28 |
-
f"{system_message}\n{issue_text}\nAssistant: ",
|
29 |
-
max_length=max_tokens,
|
30 |
-
do_sample=True,
|
31 |
-
temperature=temperature,
|
32 |
-
top_k=top_p,
|
33 |
-
)
|
34 |
-
|
35 |
-
# Extract the assistant's response
|
36 |
-
assistant_response = response[0]['generated_text'].strip()
|
37 |
|
38 |
-
|
39 |
-
if "Severity" in assistant_response:
|
40 |
-
severity = assistant_response.split(":")[1].strip()
|
41 |
|
42 |
-
|
43 |
-
programming_language = assistant_response.split(":")[1].strip()
|
44 |
-
|
45 |
-
return {
|
46 |
-
'assistant_response': assistant_response,
|
47 |
-
'severity': severity,
|
48 |
-
'programming_language': programming_language,
|
49 |
-
}
|
50 |
-
|
51 |
-
def find_related_issues(issue_text: str, issues: list) -> list:
|
52 |
-
# Calculate the similarity between the issue and other issues
|
53 |
issue_embedding = similarity_model.encode(issue_text)
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
# Select the top related issues
|
60 |
-
related_issues = [issues[i] for i, similarity in sorted_issues[:MAX_RELATED_ISSUES]]
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
-
def fetch_github_issues(github_api_token: str, github_username: str, github_repository: str)
|
65 |
-
# Fetch the issues from the GitHub API
|
66 |
headers = {'Authorization': f'token {github_api_token}'}
|
67 |
url = f"{GITHUB_API_BASE_URL}/{github_username}/{github_repository}/issues"
|
68 |
response = requests.get(url, headers=headers)
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
return issues
|
74 |
|
75 |
def respond(
|
76 |
command,
|
@@ -85,29 +56,11 @@ def respond(
|
|
85 |
selected_model,
|
86 |
severity,
|
87 |
programming_language,
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
# Generate a response
|
95 |
-
response = model(
|
96 |
-
f"{system_message}\n{command}\n{history}\n{github_username}/{github_repository}\n{severity}\n{programming_language}\nAssistant: ",
|
97 |
-
max_length=max_tokens,
|
98 |
-
do_sample=True,
|
99 |
-
temperature=temperature,
|
100 |
-
top_k=top_p,
|
101 |
-
)
|
102 |
-
|
103 |
-
# Extract the assistant's response
|
104 |
-
assistant_response = response[0]['generated_text'].strip()
|
105 |
-
|
106 |
-
return {
|
107 |
-
'assistant_response': assistant_response,
|
108 |
-
'severity': severity,
|
109 |
-
'programming_language': programming_language,
|
110 |
-
}
|
111 |
|
112 |
with gr.Blocks() as demo:
|
113 |
with gr.Row():
|
@@ -115,66 +68,29 @@ with gr.Blocks() as demo:
|
|
115 |
github_username = gr.Textbox(label="GitHub Username")
|
116 |
github_repository = gr.Textbox(label="GitHub Repository")
|
117 |
|
118 |
-
system_message = gr.Textbox(
|
119 |
-
|
120 |
-
|
121 |
-
)
|
122 |
-
|
123 |
-
model_dropdown = gr.Dropdown(
|
124 |
-
choices=[
|
125 |
-
"microsoft/CodeBERT-base",
|
126 |
-
"Salesforce/codegen-350M-mono",
|
127 |
-
],
|
128 |
-
label="Select Model for Issue Resolution",
|
129 |
-
value=DEFAULT_MODEL,
|
130 |
-
)
|
131 |
-
|
132 |
-
severity_dropdown = gr.Dropdown(
|
133 |
-
choices=["Critical", "Major", "Minor", "Trivial"],
|
134 |
-
label="Severity",
|
135 |
-
value=None,
|
136 |
-
)
|
137 |
-
|
138 |
programming_language_textbox = gr.Textbox(label="Programming Language")
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
"/help",
|
144 |
-
"/generate_code",
|
145 |
-
"/explain_concept",
|
146 |
-
"/write_documentation",
|
147 |
-
"/translate_code",
|
148 |
-
],
|
149 |
-
label="Select Command",
|
150 |
-
)
|
151 |
-
|
152 |
-
chatbot = MyChatbot(
|
153 |
-
respond,
|
154 |
-
additional_inputs=[
|
155 |
command_dropdown,
|
156 |
system_message,
|
157 |
-
gr.Slider(minimum=1, maximum=8192, value=2048,
|
158 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.71,
|
159 |
-
gr.Slider(
|
160 |
-
minimum=0.1,
|
161 |
-
maximum=1.0,
|
162 |
-
value=0.95,
|
163 |
-
step=0.01,
|
164 |
-
label="Top-p (nucleus sampling)",
|
165 |
-
),
|
166 |
github_api_token,
|
167 |
github_username,
|
168 |
github_repository,
|
169 |
model_dropdown,
|
170 |
severity_dropdown,
|
171 |
-
programming_language_textbox
|
172 |
],
|
|
|
173 |
)
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
-
demo.
|
177 |
-
share=True,
|
178 |
-
server_name="0.0.0.0",
|
179 |
-
server_port=7860
|
180 |
-
)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import requests
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
from sentence_transformers import SentenceTransformer, util
|
5 |
|
6 |
+
# Initialize models and tokenizers
|
|
|
7 |
model_name = "enricoros/big-agi"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
|
11 |
+
# Constants
|
|
|
12 |
GITHUB_API_BASE_URL = "https://api.github.com/repos"
|
13 |
DEFAULT_MODEL = "microsoft/CodeBERT-base"
|
14 |
MAX_RELATED_ISSUES = 3
|
|
|
16 |
# Load a pre-trained model for sentence similarity
|
17 |
similarity_model = SentenceTransformer('all-mpnet-base-v2')
|
18 |
|
19 |
+
def analyze_issues(issue_text: str, model_name: str, severity: str = None, programming_language: str = None):
|
20 |
+
# Generate a response using the loaded model
|
21 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
22 |
+
response = generator(issue_text, max_length=512, num_return_sequences=1)[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
return response
|
|
|
|
|
25 |
|
26 |
+
def find_related_issues(issue_text: str, issues: list):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
issue_embedding = similarity_model.encode(issue_text)
|
28 |
+
related_issues = []
|
29 |
+
for issue in issues:
|
30 |
+
title_embedding = similarity_model.encode(issue['title'])
|
31 |
+
similarity = util.cos_sim(issue_embedding, title_embedding)[0][0]
|
32 |
+
related_issues.append((issue, similarity.item()))
|
|
|
|
|
33 |
|
34 |
+
related_issues.sort(key=lambda x: x[1], reverse=True)
|
35 |
+
return [issue for issue, _ in related_issues[:MAX_RELATED_ISSUES]]
|
36 |
|
37 |
+
def fetch_github_issues(github_api_token: str, github_username: str, github_repository: str):
|
|
|
38 |
headers = {'Authorization': f'token {github_api_token}'}
|
39 |
url = f"{GITHUB_API_BASE_URL}/{github_username}/{github_repository}/issues"
|
40 |
response = requests.get(url, headers=headers)
|
41 |
+
if response.status_code == 200:
|
42 |
+
return response.json()
|
43 |
+
else:
|
44 |
+
raise Exception(f"Failed to fetch issues: {response.text}")
|
|
|
45 |
|
46 |
def respond(
|
47 |
command,
|
|
|
56 |
selected_model,
|
57 |
severity,
|
58 |
programming_language,
|
59 |
+
):
|
60 |
+
# Processing the command and generating a response
|
61 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
62 |
+
response = generator(f"{system_message}\n{command}\n{history}", max_length=max_tokens, num_return_sequences=1)[0]['generated_text']
|
63 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
with gr.Blocks() as demo:
|
66 |
with gr.Row():
|
|
|
68 |
github_username = gr.Textbox(label="GitHub Username")
|
69 |
github_repository = gr.Textbox(label="GitHub Repository")
|
70 |
|
71 |
+
system_message = gr.Textbox(value="You are GitBot, the Github project guardian angel.", label="System message")
|
72 |
+
model_dropdown = gr.Dropdown(choices=[DEFAULT_MODEL, "enricoros/big-agi"], label="Select Model for Issue Resolution", value=DEFAULT_MODEL)
|
73 |
+
severity_dropdown = gr.Dropdown(choices=["Critical", "Major", "Minor", "Trivial"], label="Severity")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
programming_language_textbox = gr.Textbox(label="Programming Language")
|
75 |
+
command_dropdown = gr.Dropdown(choices=["/github", "/help", "/generate_code"], label="Select Command")
|
76 |
|
77 |
+
chatbot = gr.Interface(
|
78 |
+
fn=respond,
|
79 |
+
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
command_dropdown,
|
81 |
system_message,
|
82 |
+
gr.Slider(minimum=1, maximum=8192, value=2048, label="Max new tokens"),
|
83 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.71, label="Temperature"),
|
84 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
github_api_token,
|
86 |
github_username,
|
87 |
github_repository,
|
88 |
model_dropdown,
|
89 |
severity_dropdown,
|
90 |
+
programming_language_textbox
|
91 |
],
|
92 |
+
outputs="text"
|
93 |
)
|
94 |
|
95 |
if __name__ == "__main__":
|
96 |
+
demo.launch(share=True, server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|