Engg-SS_ChatBOT / app_try.py
abhivsh's picture
Rename app.py to app_try.py
1834fe3 verified
raw
history blame
7.79 kB
import initialize
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import VectorDBQA
from langchain_community.llms import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.chains import LLMChain
from langchain_google_genai import GoogleGenerativeAI
from langchain_google_genai import ChatGoogleGenerativeAI
import google.generativeai as genai
import gradio as gr
import requests
import os
import sys
sys.path.append('../..')
# For Google Colab
'''
from google.colab import userdata
OPENAI_API_KEY = userdata.get('OPENAI_API_KEY')
hf_token = userdata.get('hf_token')
GEMINI_API_KEY = userdata.get('GEMINI_API_KEY')
# For Desktop
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # Read local .env file
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
hf_token = os.environ['hf_token']
GEMINI_API_KEY = os.environ['GEMINI_API_KEY']
'''
# For Hugging Face
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
hf_token = os.environ.get('hf_token')
GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY')
fs_token = os.environ.get('fs_token')
llm_name = "gpt-3.5-turbo-0301"
vectordb = initialize.initialize()
chat_history = []
# For getting source documents
def get_file(source_documents):
files = set()
for doc in source_documents:
file = os.path.basename(doc.metadata['source'])
files.add(file)
# Print unique filenames
return list(set(files))
def chat_query_doc(question, history):
history = []
query_old = f"""As an experienced Electrical Engineer, please provide an elaborate, precise, and answer politely pointwise to the question: {question}.
Also, Please consider the provided chat history: {history}.
Ensure that your current response is detailed, accurate, and addresses each aspect of the question thoroughly.
If the context of the question doesn't align with your last reply, please provide your response in a fresh manner.
If don't get the answer, feel free to reply from your own knowledge."""
query = f"""As an experienced Electrical Engineer, please provide an detailed, accurate and point-wise answer to the question: """
#llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
llm = GoogleGenerativeAI(model = "gemini-pro", google_api_key = GEMINI_API_KEY)
#llm = ChatGoogleGenerativeAI(model = "gemini-1.0-pro", google_api_key = GEMINI_API_KEY, temperature = 0.1, top_k = 1, top_p = 0.95)
retriever=vectordb.as_retriever(search_type="mmr")
def get_relevant_passage(query, retriever):
passage = (retriever.invoke(query)[0]).page_content
return passage
# Perform embedding search
passage = get_relevant_passage(question, retriever)
def make_prompt(query, relevant_passage):
escaped = relevant_passage.replace("'", "").replace('"', "").replace("\n", " ")
prompt = ("""You are a helpful and informative bot that answers questions only using the text from the reference passage included below. \
Be sure to respond in a complete sentence, being elaborate and comprehensive, including all relevant background information. \
However, you are talking to a technical audience, so be sure to break down complicated concepts and \
strike a friendly and converstional tone. \
QUESTION: '{query}'
PASSAGE: '{relevant_passage}'
ANSWER: """).format(query=query, relevant_passage=escaped)
return prompt
prompt = make_prompt(question, passage)
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-pro')
answer = model.generate_content(prompt)
# Conversation Retrival Chain with Memory
# memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
qa = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, return_source_documents=True)
# # Replace input() with question variable for Gradio
result = qa({"question": query+question, "chat_history" : history})
source_docs = result["source_documents"]
file_names = get_file(source_docs)
#file_name = os.path.basename(source_docs[0].metadata['source'])
file_name = ', '.join([f"{x}" for x in file_names[:3]])
# print("History : ", history)
# print("\n Chat_his : ", chat_history)
return answer.text + "\n\nSources : " + file_name
def chat_query_IS(question, history):
llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GEMINI_API_KEY)
system_old = f""" Provide an elaborate, detailed and precise reply about the Topic as an experienced Electrical Engineer, as per relevant IS/IEEE/BIS Standard.
Also, at the end of your reply, quote the Relevant Standard Referred. Topic :
"""
system = f""" Provide a reply poetically precise as william shakespeare for the Topic :
"""
result = llm.invoke(system_old + question)
return result.content
iface_doc = gr.ChatInterface(
fn=chat_query_doc,
title="""Standard TS of POWERGRID""",
concurrency_limit = None,
examples = ["What should be the GIB height outside the GIS hall ?" ,
"Explain about STATCOM Station Ratings" ,
"Specifications of XLPE POWER Cables."],
# "Specification for Ethernet Switches in SAS."] ,
theme=gr.themes.Base(),
fill_height = True,
delete_cache = (300,360),
css = "CSS/chat_style.css",
)
iface_IS = gr.ChatInterface(
fn = chat_query_IS,
title = """Indian / International Standards""",
concurrency_limit = None,
examples = ["Type Tests for HV Switchgears." ,
"Measurement of acoustic noise level of Transformers & Reactors" ,
"Technical Requirement for 765kV class Transformer",
"Specification of Distance Relays"] ,
theme=gr.themes.Base(),
fill_height = True,
delete_cache = (300,360),
css = "CSS/chat_style.css",
)
Title= "# Conversational BOT for Model-TS & Indian / International Standards"
Description = """
### Welcome to the Language Model (SS-Engg-Dept.)! ๐Ÿ‘‹
This model is trained on **Model Technical Specifications** of the SS-Engg. Dept. and leverages the power of **Google Gemini-Pro** to answer your queries based on:
* Relevant TS, GTR & Specific Requirements ๐Ÿ“‘
* International/Indian Standards ๐ŸŒŽ๐Ÿ‡ฎ๐Ÿ‡ณ
**Tips for Effective Use:**
* Use elaborate questions for more accurate responses. ๐Ÿค”
* Clear the chat if you don't receive a reply. ๐Ÿ”„
* Include **Specific Keywords** in your query for precise results. ๐ŸŽฏ
"""
with gr.Blocks(css="CSS/style.css", fill_height=True) as demo:
with gr.Column():
with gr.Row():
with gr.Column(scale=1):
gr.Image("Images/Chatbot.png", width = 110, show_download_button = False, show_label = False, show_share_button = False, elem_id = "Logo")
with gr.Column(scale=3):
gr.Markdown(Title)
with gr.Column(scale=1):
gr.Image("Images/PG Logo.png", width = 200, show_download_button = False, show_label = False, show_share_button = False, elem_id = "PG_Logo")
with gr.Row():
gr.Markdown(Description)
with gr.Row(equal_height=True):
with gr.Column(elem_classes = ["chat_container"]):
iface_doc.render()
with gr.Column(elem_classes = ["chat_container"]):
iface_IS.render()
if __name__ == "__main__":
demo.launch(debug=True, share=True)