File size: 7,786 Bytes
e9741c9
 
 
 
 
 
 
 
 
 
 
 
 
fa7a4db
 
e9741c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834fe3
 
e9741c9
b0de7f5
e9741c9
b0de7f5
 
b84a35b
fa7a4db
 
 
b0de7f5
fa7a4db
 
 
 
 
 
 
 
 
 
 
 
 
 
9db1484
fa7a4db
 
 
 
e9741c9
fa7a4db
b0de7f5
e9741c9
 
fa7a4db
e9741c9
 
 
 
 
 
 
 
 
 
fa7a4db
 
 
e9741c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

import initialize
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import VectorDBQA
from langchain_community.llms import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.chains import LLMChain
from langchain_google_genai import GoogleGenerativeAI
from langchain_google_genai import ChatGoogleGenerativeAI

import google.generativeai as genai

import gradio as gr
import requests
import os


import sys
sys.path.append('../..')

# For Google Colab
'''
from google.colab import userdata
OPENAI_API_KEY = userdata.get('OPENAI_API_KEY')
hf_token = userdata.get('hf_token')
GEMINI_API_KEY = userdata.get('GEMINI_API_KEY')
# For Desktop
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # Read local .env file
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
hf_token = os.environ['hf_token']
GEMINI_API_KEY = os.environ['GEMINI_API_KEY']
'''

# For Hugging Face
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
hf_token = os.environ.get('hf_token')
GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY')
fs_token = os.environ.get('fs_token')

llm_name = "gpt-3.5-turbo-0301"

vectordb = initialize.initialize()

chat_history = []

# For getting source documents
def get_file(source_documents):
  files = set()
  for doc in source_documents:
    file = os.path.basename(doc.metadata['source'])
    files.add(file)
    # Print unique filenames
  return list(set(files))


def chat_query_doc(question, history):
    history = []
    query_old = f"""As an experienced Electrical Engineer, please provide an elaborate, precise, and answer politely pointwise to the question: {question}.
                    Also, Please consider the provided chat history: {history}.
                    Ensure that your current response is detailed, accurate, and addresses each aspect of the question thoroughly.
                    If the context of the question doesn't align with your last reply, please provide your response in a fresh manner.
                    If don't get the answer, feel free to reply from your own knowledge."""
    
    
    query = f"""As an experienced Electrical Engineer, please provide an detailed, accurate and point-wise answer to the question: """


    #llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
    llm = GoogleGenerativeAI(model = "gemini-pro", google_api_key = GEMINI_API_KEY)
    #llm = ChatGoogleGenerativeAI(model = "gemini-1.0-pro", google_api_key = GEMINI_API_KEY, temperature = 0.1, top_k = 1, top_p = 0.95)
    retriever=vectordb.as_retriever(search_type="mmr")

    def get_relevant_passage(query, retriever):
        
        passage = (retriever.invoke(query)[0]).page_content
        return passage

    # Perform embedding search
    passage = get_relevant_passage(question, retriever)


    def make_prompt(query, relevant_passage):
        escaped = relevant_passage.replace("'", "").replace('"', "").replace("\n", " ")
        prompt = ("""You are a helpful and informative bot that answers questions only using the text from the reference passage included below. \
        Be sure to respond in a complete sentence, being elaborate and comprehensive, including all relevant background information. \
        However, you are talking to a technical audience, so be sure to break down complicated concepts and \
        strike a friendly and converstional tone. \
        QUESTION: '{query}'
        PASSAGE: '{relevant_passage}'
        ANSWER:  """).format(query=query, relevant_passage=escaped)
        return prompt

    prompt = make_prompt(question, passage)
    genai.configure(api_key=GEMINI_API_KEY)
    model = genai.GenerativeModel('gemini-pro')
    answer = model.generate_content(prompt)
    

    # Conversation Retrival Chain with Memory
    # memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    
    qa = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, return_source_documents=True)

    # # Replace input() with question variable for Gradio
    result = qa({"question": query+question, "chat_history" : history})

    source_docs = result["source_documents"]
    file_names = get_file(source_docs)
    #file_name = os.path.basename(source_docs[0].metadata['source'])
    file_name = ', '.join([f"{x}" for x in file_names[:3]])

    # print("History : ", history)
    # print("\n Chat_his : ", chat_history)

    return answer.text + "\n\nSources : " + file_name

    


def chat_query_IS(question, history):
    llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GEMINI_API_KEY)

    system_old = f""" Provide an elaborate, detailed and precise reply about the Topic as an experienced Electrical Engineer, as per relevant IS/IEEE/BIS Standard.
              Also, at the end of your reply, quote the Relevant Standard Referred. Topic :
              """
    system = f""" Provide a reply poetically precise as william shakespeare for the Topic :
              """

    
    result = llm.invoke(system_old + question)  
    return result.content       


iface_doc = gr.ChatInterface(
    fn=chat_query_doc,
    title="""Standard TS of POWERGRID""",
    concurrency_limit = None,
    examples = ["What should be the GIB height outside the GIS hall ?" ,
                 "Explain about STATCOM Station Ratings" , 
                 "Specifications of XLPE POWER Cables."], 
             #    "Specification for Ethernet Switches in SAS."] ,
    theme=gr.themes.Base(),
    fill_height = True,
    delete_cache = (300,360),
    css = "CSS/chat_style.css",

)

iface_IS = gr.ChatInterface(
    fn = chat_query_IS,
    title = """Indian / International Standards""",
    concurrency_limit = None,
    examples = ["Type Tests for HV Switchgears." ,
                "Measurement of acoustic noise level of Transformers & Reactors" , 
                "Technical Requirement for 765kV class Transformer", 
                "Specification of Distance Relays"] ,
    theme=gr.themes.Base(),
    fill_height = True,
    delete_cache = (300,360),
    css = "CSS/chat_style.css",
)

Title= "# Conversational BOT for Model-TS & Indian / International Standards"

Description = """
### Welcome to the Language Model (SS-Engg-Dept.)! ๐Ÿ‘‹
This model is trained on **Model Technical Specifications** of the SS-Engg. Dept. and leverages the power of **Google Gemini-Pro** to answer your queries based on:
*   Relevant TS, GTR & Specific Requirements ๐Ÿ“‘
*   International/Indian Standards ๐ŸŒŽ๐Ÿ‡ฎ๐Ÿ‡ณ
**Tips for Effective Use:**
*   Use elaborate questions for more accurate responses. ๐Ÿค”
*   Clear the chat if you don't receive a reply. ๐Ÿ”„
*   Include **Specific Keywords** in your query for precise results. ๐ŸŽฏ 
"""              
 

with gr.Blocks(css="CSS/style.css", fill_height=True) as demo:
  
  with gr.Column():
    
    with gr.Row():
      with gr.Column(scale=1):
        gr.Image("Images/Chatbot.png", width = 110, show_download_button = False, show_label = False, show_share_button = False, elem_id = "Logo")
      with gr.Column(scale=3):
        gr.Markdown(Title)
      with gr.Column(scale=1):
        gr.Image("Images/PG Logo.png", width = 200, show_download_button = False, show_label = False, show_share_button = False, elem_id = "PG_Logo")  
    
    with gr.Row():
      gr.Markdown(Description)
    
    with gr.Row(equal_height=True):
      with gr.Column(elem_classes = ["chat_container"]):
        iface_doc.render()
      with gr.Column(elem_classes = ["chat_container"]):
        iface_IS.render()  
       

if __name__ == "__main__":
    demo.launch(debug=True, share=True)