Spaces:
Runtime error
Runtime error
File size: 7,786 Bytes
e9741c9 fa7a4db e9741c9 1834fe3 e9741c9 b0de7f5 e9741c9 b0de7f5 b84a35b fa7a4db b0de7f5 fa7a4db 9db1484 fa7a4db e9741c9 fa7a4db b0de7f5 e9741c9 fa7a4db e9741c9 fa7a4db e9741c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import initialize
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import VectorDBQA
from langchain_community.llms import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.chains import LLMChain
from langchain_google_genai import GoogleGenerativeAI
from langchain_google_genai import ChatGoogleGenerativeAI
import google.generativeai as genai
import gradio as gr
import requests
import os
import sys
sys.path.append('../..')
# For Google Colab
'''
from google.colab import userdata
OPENAI_API_KEY = userdata.get('OPENAI_API_KEY')
hf_token = userdata.get('hf_token')
GEMINI_API_KEY = userdata.get('GEMINI_API_KEY')
# For Desktop
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # Read local .env file
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
hf_token = os.environ['hf_token']
GEMINI_API_KEY = os.environ['GEMINI_API_KEY']
'''
# For Hugging Face
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
hf_token = os.environ.get('hf_token')
GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY')
fs_token = os.environ.get('fs_token')
llm_name = "gpt-3.5-turbo-0301"
vectordb = initialize.initialize()
chat_history = []
# For getting source documents
def get_file(source_documents):
files = set()
for doc in source_documents:
file = os.path.basename(doc.metadata['source'])
files.add(file)
# Print unique filenames
return list(set(files))
def chat_query_doc(question, history):
history = []
query_old = f"""As an experienced Electrical Engineer, please provide an elaborate, precise, and answer politely pointwise to the question: {question}.
Also, Please consider the provided chat history: {history}.
Ensure that your current response is detailed, accurate, and addresses each aspect of the question thoroughly.
If the context of the question doesn't align with your last reply, please provide your response in a fresh manner.
If don't get the answer, feel free to reply from your own knowledge."""
query = f"""As an experienced Electrical Engineer, please provide an detailed, accurate and point-wise answer to the question: """
#llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
llm = GoogleGenerativeAI(model = "gemini-pro", google_api_key = GEMINI_API_KEY)
#llm = ChatGoogleGenerativeAI(model = "gemini-1.0-pro", google_api_key = GEMINI_API_KEY, temperature = 0.1, top_k = 1, top_p = 0.95)
retriever=vectordb.as_retriever(search_type="mmr")
def get_relevant_passage(query, retriever):
passage = (retriever.invoke(query)[0]).page_content
return passage
# Perform embedding search
passage = get_relevant_passage(question, retriever)
def make_prompt(query, relevant_passage):
escaped = relevant_passage.replace("'", "").replace('"', "").replace("\n", " ")
prompt = ("""You are a helpful and informative bot that answers questions only using the text from the reference passage included below. \
Be sure to respond in a complete sentence, being elaborate and comprehensive, including all relevant background information. \
However, you are talking to a technical audience, so be sure to break down complicated concepts and \
strike a friendly and converstional tone. \
QUESTION: '{query}'
PASSAGE: '{relevant_passage}'
ANSWER: """).format(query=query, relevant_passage=escaped)
return prompt
prompt = make_prompt(question, passage)
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-pro')
answer = model.generate_content(prompt)
# Conversation Retrival Chain with Memory
# memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
qa = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, return_source_documents=True)
# # Replace input() with question variable for Gradio
result = qa({"question": query+question, "chat_history" : history})
source_docs = result["source_documents"]
file_names = get_file(source_docs)
#file_name = os.path.basename(source_docs[0].metadata['source'])
file_name = ', '.join([f"{x}" for x in file_names[:3]])
# print("History : ", history)
# print("\n Chat_his : ", chat_history)
return answer.text + "\n\nSources : " + file_name
def chat_query_IS(question, history):
llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GEMINI_API_KEY)
system_old = f""" Provide an elaborate, detailed and precise reply about the Topic as an experienced Electrical Engineer, as per relevant IS/IEEE/BIS Standard.
Also, at the end of your reply, quote the Relevant Standard Referred. Topic :
"""
system = f""" Provide a reply poetically precise as william shakespeare for the Topic :
"""
result = llm.invoke(system_old + question)
return result.content
iface_doc = gr.ChatInterface(
fn=chat_query_doc,
title="""Standard TS of POWERGRID""",
concurrency_limit = None,
examples = ["What should be the GIB height outside the GIS hall ?" ,
"Explain about STATCOM Station Ratings" ,
"Specifications of XLPE POWER Cables."],
# "Specification for Ethernet Switches in SAS."] ,
theme=gr.themes.Base(),
fill_height = True,
delete_cache = (300,360),
css = "CSS/chat_style.css",
)
iface_IS = gr.ChatInterface(
fn = chat_query_IS,
title = """Indian / International Standards""",
concurrency_limit = None,
examples = ["Type Tests for HV Switchgears." ,
"Measurement of acoustic noise level of Transformers & Reactors" ,
"Technical Requirement for 765kV class Transformer",
"Specification of Distance Relays"] ,
theme=gr.themes.Base(),
fill_height = True,
delete_cache = (300,360),
css = "CSS/chat_style.css",
)
Title= "# Conversational BOT for Model-TS & Indian / International Standards"
Description = """
### Welcome to the Language Model (SS-Engg-Dept.)! ๐
This model is trained on **Model Technical Specifications** of the SS-Engg. Dept. and leverages the power of **Google Gemini-Pro** to answer your queries based on:
* Relevant TS, GTR & Specific Requirements ๐
* International/Indian Standards ๐๐ฎ๐ณ
**Tips for Effective Use:**
* Use elaborate questions for more accurate responses. ๐ค
* Clear the chat if you don't receive a reply. ๐
* Include **Specific Keywords** in your query for precise results. ๐ฏ
"""
with gr.Blocks(css="CSS/style.css", fill_height=True) as demo:
with gr.Column():
with gr.Row():
with gr.Column(scale=1):
gr.Image("Images/Chatbot.png", width = 110, show_download_button = False, show_label = False, show_share_button = False, elem_id = "Logo")
with gr.Column(scale=3):
gr.Markdown(Title)
with gr.Column(scale=1):
gr.Image("Images/PG Logo.png", width = 200, show_download_button = False, show_label = False, show_share_button = False, elem_id = "PG_Logo")
with gr.Row():
gr.Markdown(Description)
with gr.Row(equal_height=True):
with gr.Column(elem_classes = ["chat_container"]):
iface_doc.render()
with gr.Column(elem_classes = ["chat_container"]):
iface_IS.render()
if __name__ == "__main__":
demo.launch(debug=True, share=True) |