chat2 / app.py
abdelghanighpgmailcom's picture
Create app.py
d1e3a30 verified
from fastapi import FastAPI, Request, Query
from fastapi.responses import StreamingResponse
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
import time
app = FastAPI()
model_name = "prajjwal1/bert-tiny" # Pretrained BERT-Tiny on Hugging Face
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# SSE generator
def event_stream(text: str):
time.sleep(1)
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
prediction = torch.argmax(probs, dim=1).item()
yield f"data: {prediction}\n\n"
@app.get("/chatstrm")
async def chat(query: str = Query(..., description="User's message")):
return StreamingResponse(event_stream(query) , media_type="text/event-stream")
# Entry point
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7899)