from fastapi import FastAPI, Request, Query from fastapi.responses import StreamingResponse from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch import time app = FastAPI() model_name = "prajjwal1/bert-tiny" # Pretrained BERT-Tiny on Hugging Face tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # SSE generator def event_stream(text: str): time.sleep(1) inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=1) prediction = torch.argmax(probs, dim=1).item() yield f"data: {prediction}\n\n" @app.get("/chatstrm") async def chat(query: str = Query(..., description="User's message")): return StreamingResponse(event_stream(query) , media_type="text/event-stream") # Entry point if __name__ == "__main__": import uvicorn uvicorn.run("app:app", host="0.0.0.0", port=7899)