Update app.py
Browse files
app.py
CHANGED
@@ -13,9 +13,10 @@ import csv
|
|
13 |
import datetime
|
14 |
import zipfile
|
15 |
|
16 |
-
# Admin
|
17 |
ADMIN_KEY = "Diabetes_Detection"
|
18 |
|
|
|
19 |
device = torch.device("cpu")
|
20 |
|
21 |
# Load model
|
@@ -25,11 +26,11 @@ model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=devi
|
|
25 |
model.to(device)
|
26 |
model.eval()
|
27 |
|
28 |
-
# Grad-CAM
|
29 |
target_layer = model.layer4[-1]
|
30 |
cam = GradCAM(model=model, target_layers=[target_layer])
|
31 |
|
32 |
-
#
|
33 |
transform = transforms.Compose([
|
34 |
transforms.Resize((224, 224)),
|
35 |
transforms.ToTensor(),
|
@@ -37,7 +38,7 @@ transform = transforms.Compose([
|
|
37 |
[0.229, 0.224, 0.225])
|
38 |
])
|
39 |
|
40 |
-
#
|
41 |
image_folder = "collected_images"
|
42 |
os.makedirs(image_folder, exist_ok=True)
|
43 |
|
@@ -47,7 +48,7 @@ if not os.path.exists(csv_log_path):
|
|
47 |
writer = csv.writer(f)
|
48 |
writer.writerow(["timestamp", "image_filename", "prediction", "confidence"])
|
49 |
|
50 |
-
# Prediction
|
51 |
def predict_retinopathy(image):
|
52 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
53 |
img = image.convert("RGB").resize((224, 224))
|
@@ -68,7 +69,7 @@ def predict_retinopathy(image):
|
|
68 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
69 |
cam_pil = Image.fromarray(cam_image)
|
70 |
|
71 |
-
# Save image
|
72 |
image_filename = f"{timestamp}_{label.replace(' ', '_')}.png"
|
73 |
image_path = os.path.join(image_folder, image_filename)
|
74 |
image.save(image_path)
|
@@ -79,7 +80,13 @@ def predict_retinopathy(image):
|
|
79 |
|
80 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
81 |
|
82 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
def download_csv():
|
84 |
return csv_log_path
|
85 |
|
@@ -92,20 +99,13 @@ def download_dataset_zip():
|
|
92 |
zipf.write(fpath, arcname=os.path.join("images", fname))
|
93 |
return zip_filename
|
94 |
|
95 |
-
|
96 |
-
if f"admin={ADMIN_KEY}" in query_str:
|
97 |
-
return gr.update(visible=True)
|
98 |
-
return gr.update(visible=False)
|
99 |
-
|
100 |
-
# Gradio UI
|
101 |
with gr.Blocks() as demo:
|
102 |
gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM")
|
103 |
|
104 |
-
url_input = gr.Textbox(visible=False) # Holds query string
|
105 |
-
|
106 |
with gr.Row():
|
107 |
image_input = gr.Image(type="pil", label="Upload Retinal Image")
|
108 |
-
cam_output = gr.Image(type="pil", label="Grad-CAM")
|
109 |
|
110 |
prediction_output = gr.Text(label="Prediction")
|
111 |
run_button = gr.Button("Submit")
|
@@ -116,16 +116,24 @@ with gr.Blocks() as demo:
|
|
116 |
outputs=[cam_output, prediction_output]
|
117 |
)
|
118 |
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
121 |
with gr.Row():
|
122 |
download_csv_btn = gr.Button("📄 Download CSV Log")
|
123 |
-
download_zip_btn = gr.Button("📦 Download Dataset
|
124 |
csv_file = gr.File()
|
125 |
zip_file = gr.File()
|
126 |
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
129 |
|
130 |
download_csv_btn.click(fn=download_csv, inputs=[], outputs=csv_file)
|
131 |
download_zip_btn.click(fn=download_dataset_zip, inputs=[], outputs=zip_file)
|
|
|
13 |
import datetime
|
14 |
import zipfile
|
15 |
|
16 |
+
# ✅ Admin key (hidden until typed)
|
17 |
ADMIN_KEY = "Diabetes_Detection"
|
18 |
|
19 |
+
# Set device
|
20 |
device = torch.device("cpu")
|
21 |
|
22 |
# Load model
|
|
|
26 |
model.to(device)
|
27 |
model.eval()
|
28 |
|
29 |
+
# Grad-CAM setup
|
30 |
target_layer = model.layer4[-1]
|
31 |
cam = GradCAM(model=model, target_layers=[target_layer])
|
32 |
|
33 |
+
# Image preprocessing
|
34 |
transform = transforms.Compose([
|
35 |
transforms.Resize((224, 224)),
|
36 |
transforms.ToTensor(),
|
|
|
38 |
[0.229, 0.224, 0.225])
|
39 |
])
|
40 |
|
41 |
+
# Data storage
|
42 |
image_folder = "collected_images"
|
43 |
os.makedirs(image_folder, exist_ok=True)
|
44 |
|
|
|
48 |
writer = csv.writer(f)
|
49 |
writer.writerow(["timestamp", "image_filename", "prediction", "confidence"])
|
50 |
|
51 |
+
# Prediction function
|
52 |
def predict_retinopathy(image):
|
53 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
54 |
img = image.convert("RGB").resize((224, 224))
|
|
|
69 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
70 |
cam_pil = Image.fromarray(cam_image)
|
71 |
|
72 |
+
# Save image & log
|
73 |
image_filename = f"{timestamp}_{label.replace(' ', '_')}.png"
|
74 |
image_path = os.path.join(image_folder, image_filename)
|
75 |
image.save(image_path)
|
|
|
80 |
|
81 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
82 |
|
83 |
+
# Admin unlock
|
84 |
+
def unlock_admin(key_input):
|
85 |
+
if key_input == ADMIN_KEY:
|
86 |
+
return gr.update(visible=True)
|
87 |
+
return gr.update(visible=False)
|
88 |
+
|
89 |
+
# Download functions
|
90 |
def download_csv():
|
91 |
return csv_log_path
|
92 |
|
|
|
99 |
zipf.write(fpath, arcname=os.path.join("images", fname))
|
100 |
return zip_filename
|
101 |
|
102 |
+
# UI
|
|
|
|
|
|
|
|
|
|
|
103 |
with gr.Blocks() as demo:
|
104 |
gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM")
|
105 |
|
|
|
|
|
106 |
with gr.Row():
|
107 |
image_input = gr.Image(type="pil", label="Upload Retinal Image")
|
108 |
+
cam_output = gr.Image(type="pil", label="Grad-CAM Output")
|
109 |
|
110 |
prediction_output = gr.Text(label="Prediction")
|
111 |
run_button = gr.Button("Submit")
|
|
|
116 |
outputs=[cam_output, prediction_output]
|
117 |
)
|
118 |
|
119 |
+
gr.Markdown("### 🔐 Admin Access (Rodiyah only)")
|
120 |
+
|
121 |
+
admin_key_input = gr.Text(label="Enter Admin Key", type="password", placeholder="Only Rodiyah knows this!")
|
122 |
+
unlock_button = gr.Button("Unlock Downloads")
|
123 |
+
|
124 |
+
with gr.Column(visible=False) as admin_panel:
|
125 |
+
gr.Markdown("### ✅ Download Panel (Private Access)")
|
126 |
with gr.Row():
|
127 |
download_csv_btn = gr.Button("📄 Download CSV Log")
|
128 |
+
download_zip_btn = gr.Button("📦 Download Full Dataset")
|
129 |
csv_file = gr.File()
|
130 |
zip_file = gr.File()
|
131 |
|
132 |
+
unlock_button.click(
|
133 |
+
fn=unlock_admin,
|
134 |
+
inputs=admin_key_input,
|
135 |
+
outputs=admin_panel
|
136 |
+
)
|
137 |
|
138 |
download_csv_btn.click(fn=download_csv, inputs=[], outputs=csv_file)
|
139 |
download_zip_btn.click(fn=download_dataset_zip, inputs=[], outputs=zip_file)
|